Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Health Phys ; 92(5): 464-74, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17429305

RESUMO

Uranium uptake can occur accidentally by inhalation, ingestion, injection, or absorption through intact or wounded skin. Intact or wounded skin routes of absorption of uranium have received little attention. The aims of our work were (1) to evaluate the influence of the type of wound contamination on the short term distribution and excretion of uranium in rats and (2) to generate data to assess the time available to treat contamination of intact or wounded skin before significant uptake of uranium occurs. Biokinetic data presented in the present paper are based on an in vivo rat model. This study shows that a significant uptake of a uranyl nitrate solution through intact skin can occur within the first 6 h of exposure. Absorption of a uranyl nitrate solution through excoriated skin is significant after only 30 min of exposure. After a 24-h exposure, uranium uptake through intact skin and excoriated skin represents about 0.4% and 38% of the initial deposit of uranium, respectively. Contaminated serious chemical skin burns induced by HNO3 or NaOH are paradoxically less important in terms of uranium uptake risk because 99% of the incorporated uranium remains trapped at the wound site and its incorporation is delayed for at least 6 h after the beginning of contamination. These results confirm that the biokinetics of a given physicochemical form of uranium incorporated after wound contamination depend largely on the physiological evolution of the considered wound. Each type of wound, with its corresponding biokinetics of a uranium species, is a particular case.


Assuntos
Fezes/química , Pele/lesões , Pele/metabolismo , Urânio/farmacocinética , Urânio/urina , Ferimentos e Lesões/metabolismo , Animais , Masculino , Taxa de Depuração Metabólica , Exposição Ocupacional/análise , Especificidade de Órgãos , Ratos , Absorção Cutânea , Distribuição Tecidual
2.
Radiat Prot Dosimetry ; 127(1-4): 125-30, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17553861

RESUMO

The aim of this work is to assess in vivo in a hairless rat model, the percutaneous diffusion of uranium through intact or wounded rat skin. Six types of wounds were simulated by excoriation and burns with 10 N HF, 2, 5 and 14 N HNO3 and 10 N NaOH on anaesthetised hairless rats. Percutaneous penetration through wounded skin towards blood and subsequent urinary excretion of uranium was followed in vivo during 24 h. The influence of the physicochemical form (solution or powder) of uranyl nitrate (UN) on its percutaneous diffusion was also investigated. UN, even as a powder, can diffuse through intact skin. The presence of uranium in blood is more persistent and its urinary elimination is slower after an HF burn than after an HNO3 burn. Excoriation increases dramatically percutaneous absorption of UN. Thus, percutaneous diffusion of UN is largely dependent on skin barrier integrity with a particular importance of stratum corneum.


Assuntos
Corpos Estranhos/metabolismo , Radiometria/métodos , Absorção Cutânea , Urânio/farmacocinética , Ferimentos Penetrantes/metabolismo , Animais , Carga Corporal (Radioterapia) , Simulação por Computador , Corpos Estranhos/complicações , Corpos Estranhos/dietoterapia , Cinética , Masculino , Taxa de Depuração Metabólica , Modelos Biológicos , Ratos , Ratos Pelados , Eficiência Biológica Relativa , Urânio/toxicidade , Ferimentos Penetrantes/tratamento farmacológico , Ferimentos Penetrantes/etiologia
3.
Health Phys ; 90(2): 139-47, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16404171

RESUMO

Data describing the biokinetics of radionuclides after contamination come mainly from experimental acute exposures of laboratory animals and follow-up of incidental exposures of humans. These data were compiled to form reference models that could be used for dose calculation in humans. In case of protracted exposure, the same models are applied, assuming that they are not modified by the duration of exposure. This work aims at testing this hypothesis. It presents new experimental data on retention of uranium after chronic intake, which are compared to values calculated from a biokinetic model that is based on experiments of acute exposure of rats to uranium. Experiments were performed with 56 male Sprague Dawley rats, from which 35 were exposed during their whole adult life to 40 mg L of uranyl nitrate dissolved in mineral water and 21 were kept as controls. Animals were euthanatized at 32, 95, 186, 312, 368, and 570 d after the beginning of contamination. Urine and all tissues were removed, weighted, mineralized, and then analyzed for uranium content by Kinetics Phosphorescence Analysis (KPA) or by ICP-MS. Experimental data showed that uranium accumulated in most organs, following a nonmonotonous pattern. Peaks of activities were observed at 1-3, 10, and 19 mo after the beginning of exposure. Additionally, accumulation was shown to occur in tissues such as teeth and brain that are not usually described as target organs. Comparison with model prediction showed that the accumulation of uranium in target organs after chronic exposure is overestimated by the use of a model designed for acute exposure. These differences indicate that protracted exposure to uranium may induce changes in biokinetic parameters when compared to acute contamination and that calculation of dose resulting from chronic intake of radionuclides may need specific models that are not currently available.


Assuntos
Modelos Biológicos , Urânio/farmacocinética , Administração Oral , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Urânio/urina
4.
Can J Physiol Pharmacol ; 82(2): 133-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15052294

RESUMO

At the present time, the International Commission on Radiological Protection (ICRP) has not published any model concerning internal radioactive contamination by uptake from wounds. The aims of our work were to determine the time available to treat contamination of intact or wounded skin before a significant uptake of uranium occurred and to evaluate the consequences of incomplete decontamination on uranium uptake. The kinetics of percutaneous diffusion of uranium through intact or excoriated skin and its distribution in skin layers were evaluated using an in vitro technique. Our data demonstrated a dramatic increase of uranium percutaneous diffusion through excoriated skin compared with intact skin. Significant uptake of uranium through excoriated skin occurred in only 30 min, indicating that there is only a short interval available to treat a contaminated wound effectively. Moreover, in the case of an incompletely decontaminated superficial wound, viable epidermis behaved as a reservoir for uranium that remained bioavailable. At the present time, potential uptake of uranium and perhaps other radionuclides through intact or wounded skin is not adequately taken into account by radiological protection agencies. Our results emphasize the need for further study and modeling of uptake of radionuclides through intact or wounded skin.


Assuntos
Descontaminação , Absorção Cutânea , Fenômenos Fisiológicos da Pele , Pele/metabolismo , Nitrato de Uranil/farmacocinética , Administração Cutânea , Animais , Orelha Externa , Epiderme/lesões , Epiderme/metabolismo , Técnicas In Vitro , Masculino , Ratos , Pele/lesões , Especificidade da Espécie , Suínos , Ferimentos e Lesões/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa