Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(8): 2909-14, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24516126

RESUMO

Modeling results incorporating several distinct urban expansion futures for the United States in 2100 show that, in the absence of any adaptive urban design, megapolitan expansion, alone and separate from greenhouse gas-induced forcing, can be expected to raise near-surface temperatures 1-2 °C not just at the scale of individual cities but over large regional swaths of the country. This warming is a significant fraction of the 21st century greenhouse gas-induced climate change simulated by global climate models. Using a suite of regional climate simulations, we assessed the efficacy of commonly proposed urban adaptation strategies, such as green, cool roof, and hybrid approaches, to ameliorate the warming. Our results quantify how judicious choices in urban planning and design cannot only counteract the climatological impacts of the urban expansion itself but also, can, in fact, even offset a significant percentage of future greenhouse warming over large scales. Our results also reveal tradeoffs among different adaptation options for some regions, showing the need for geographically appropriate strategies rather than one size fits all solutions.


Assuntos
Cidades , Mudança Climática , Meio Ambiente , Modelos Teóricos , Urbanização , Simulação por Computador , Geografia , Temperatura , Estados Unidos
2.
Environ Sci Technol ; 49(6): 3887-96, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25648639

RESUMO

Estimating population exposure to particulate matter during wildfires can be difficult because of insufficient monitoring data to capture the spatiotemporal variability of smoke plumes. Chemical transport models (CTMs) and satellite retrievals provide spatiotemporal data that may be useful in predicting PM2.5 during wildfires. We estimated PM2.5 concentrations during the 2008 northern California wildfires using 10-fold cross-validation (CV) to select an optimal prediction model from a set of 11 statistical algorithms and 29 predictor variables. The variables included CTM output, three measures of satellite aerosol optical depth, distance to the nearest fires, meteorological data, and land use, traffic, spatial location, and temporal characteristics. The generalized boosting model (GBM) with 29 predictor variables had the lowest CV root mean squared error and a CV-R2 of 0.803. The most important predictor variable was the Geostationary Operational Environmental Satellite Aerosol/Smoke Product (GASP) Aerosol Optical Depth (AOD), followed by the CTM output and distance to the nearest fire cluster. Parsimonious models with various combinations of fewer variables also predicted PM2.5 well. Using machine learning algorithms to combine spatiotemporal data from satellites and CTMs can reliably predict PM2.5 concentrations during a major wildfire event.


Assuntos
Algoritmos , Incêndios , Modelos Teóricos , Material Particulado/análise , Aerossóis/análise , Poluentes Atmosféricos/análise , Inteligência Artificial , California , Valor Preditivo dos Testes , Fumaça/análise
3.
Ecology ; 94(7): 1441-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23951703

RESUMO

Although nitrogen (N) deposition is a significant threat to herbaceous plant biodiversity worldwide, it is not a new stressor for many developed regions. Only recently has it become possible to estimate historical impacts nationally for the United States. We used 26 years (1985-2010) of deposition data, with ecosystem-specific functional responses from local field experiments and a national critical loads (CL) database, to generate scenario-based estimates of herbaceous species loss. Here we show that, in scenarios using the low end of the CL range, N deposition exceeded critical loads over 0.38, 6.5, 13.1, 88.6, and 222.1 million ha for the Mediterranean California, North American Desert, Northwestern Forested Mountains, Great Plains, and Eastern Forest ecoregions, respectively, with corresponding species losses ranging from < 1% to 30%. When we ran scenarios assuming ecosystems were less sensitive (using a common CL of 10 kg x ha(-1) x yr(-1), and the high end of the CL range) minimal losses were estimated. The large range in projected impacts among scenarios implies uncertainty as to whether current critical loads provide protection to terrestrial plant biodiversity nationally and urge greater research in refining critical loads for U.S. ecosystems.


Assuntos
Biodiversidade , Poluentes Ambientais/toxicidade , Extinção Biológica , Nitrogênio/toxicidade , Animais , Poluentes Ambientais/química , Nitrogênio/química , Fatores de Tempo , Estados Unidos
4.
Environ Manage ; 48(3): 631-43, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21638079

RESUMO

The diversity and abundance of information available for vulnerability assessments can present a challenge to decision-makers. Here we propose a framework to aggregate and present socioeconomic and environmental data in a visual vulnerability assessment that will help prioritize management options for communities vulnerable to environmental change. Socioeconomic and environmental data are aggregated into distinct categorical indices across three dimensions and arranged in a cube, so that individual communities can be plotted in a three-dimensional space to assess the type and relative magnitude of the communities' vulnerabilities based on their position in the cube. We present an example assessment using a subset of the USEPA National Estuary Program (NEP) estuaries: coastal communities vulnerable to the effects of environmental change on ecosystem health and water quality. Using three categorical indices created from a pool of publicly available data (socioeconomic index, land use index, estuary condition index), the estuaries were ranked based on their normalized averaged scores and then plotted along the three axes to form a vulnerability cube. The position of each community within the three-dimensional space communicates both the types of vulnerability endemic to each estuary and allows for the clustering of estuaries with like-vulnerabilities to be classified into typologies. The typologies highlight specific vulnerability descriptions that may be helpful in creating specific management strategies. The data used to create the categorical indices are flexible depending on the goals of the decision makers, as different data should be chosen based on availability or importance to the system. Therefore, the analysis can be tailored to specific types of communities, allowing a data rich process to inform decision-making.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Abastecimento de Água/análise , Tomada de Decisões , Humanos , Medição de Risco/métodos , Rios , Água do Mar , Fatores Socioeconômicos , Abastecimento de Água/normas
5.
Hydrol Earth Syst Sci ; 25(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34385811

RESUMO

We apply the hydrologic landscape (HL) concept to assess the hydrologic vulnerability of the western United States (U.S.) to projected climate conditions. Our goal is to understand the potential impacts of hydrologic vulnerability for stakeholder-defined interests across large geographic areas. The basic assumption of the HL approach is that catchments that share similar physical and climatic characteristics are expected to have similar hydrologic characteristics. We use the hydrologic landscape vulnerability approach (HLVA) to map the HLVA index (an assessment of climate vulnerability) by integrating hydrologic landscapes into a retrospective analysis of historical data to assess variability in future climate projections and hydrology, which includes temperature, precipitation, potential evapotranspiration, snow accumulation, climatic moisture, surplus water, and seasonality of water surplus. Projections that are beyond 2 standard deviations of the historical decadal average contribute to the HLVA index for each metric. Separating vulnerability into these seven separate metrics allows stakeholders and/or water resource managers to have a more specific understanding of the potential impacts of future conditions. We also apply this approach to examine case studies. The case studies (Mt. Hood, Willamette Valley, and Napa-Sonoma Valley) are important to the ski and wine industries and illustrate how our approach might be used by specific stakeholders. The resulting vulnerability maps show that temperature and potential evapotranspiration are consistently projected to have high vulnerability indices for the western U.S. Precipitation vulnerability is not as spatially uniform as temperature. The highest-elevation areas with snow are projected to experience significant changes in snow accumulation. The seasonality vulnerability map shows that specific mountainous areas in the west are most prone to changes in seasonality, whereas many transitional terrains are moderately susceptible. This paper illustrates how HL and the HLVA can help assess climatic and hydrologic vulnerability across large spatial scales. By combining the HL concept and HLVA, resource managers could consider future climate conditions in their decisions about managing important economic and conservation resources.

6.
Artigo em Inglês | MEDLINE | ID: mdl-30388822

RESUMO

Recent assessments have found that a warming climate, with associated increases in extreme heat events, could profoundly affect human health. This paper describes a new modeling and analysis framework, built around the Benefits Mapping and Analysis Program-Community Edition (BenMAP), for estimating heat-related mortality as a function of changes in key factors that determine the health impacts of extreme heat. This new framework has the flexibility to integrate these factors within health risk assessments, and to sample across the uncertainties in them, to provide a more comprehensive picture of total health risk from climate-driven increases in extreme heat. We illustrate the framework's potential with an updated set of projected heat-related mortality estimates for the United States. These projections combine downscaled Coupled Modeling Intercomparison Project 5 (CMIP5) climate model simulations for Representative Concentration Pathway (RCP)4.5 and RCP8.5, using the new Locating and Selecting Scenarios Online (LASSO) tool to select the most relevant downscaled climate realizations for the study, with new population projections from EPA's Integrated Climate and Land Use Scenarios (ICLUS) project. Results suggest that future changes in climate could cause approximately from 3000 to more than 16,000 heat-related deaths nationally on an annual basis. This work demonstrates that uncertainties associated with both future population and future climate strongly influence projected heat-related mortality. This framework can be used to systematically evaluate the sensitivity of projected future heat-related mortality to the key driving factors and major sources of methodological uncertainty inherent in such calculations, improving the scientific foundations of risk-based assessments of climate change and human health.


Assuntos
Mudança Climática/mortalidade , Mudança Climática/estatística & dados numéricos , Demografia/estatística & dados numéricos , Calor Extremo/efeitos adversos , Mortalidade/tendências , Medição de Risco , Previsões , Humanos , Modelos Teóricos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa