Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 255: 121508, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552487

RESUMO

Water treatment works have previously shown high efficiency in removing microplastics > 25 µm from raw source water. However, what is less well known is the extent to which microplastics of this size class are generated or lost within the water distribution network, particularly whether there is a greater presence in the customer tap than in the water treatment works outlet. This study focused on the presence of 21 different types of synthetic polymer particles with sizes larger than 25 µm examined through multiple rounds of sampling at outlets of water treatment works (WTW), service reservoirs (SR), and customer taps (CT) managed by seven different water companies in Britain. Nineteen different types of polymers were detected; their signature and concentration varied based on the round of sampling, the location within the water supply network, and the water company responsible for managing the supply. Among the polymers examined, polyamide (PA), polyethene terephthalate (PET), polypropylene (PP), and polystyrene (PS) were the most commonly found. Apart from PET having its highest concentration of 0.0189 microplastic per litre (MP/L) in the SR, the concentrations of the other three most frequent polymers (PS = 0.017 MP/L, PA = 0.0752 MP/L, PP= 0.1513 MP/L) were highest in the CT. The overall prevalence of this size of microplastics in the network is low, but there was a high variability of polymer types and occurrences. These spatial and temporal variations suggested that the MP in the distribution network may exist as a series of pulses. Given the presence and polymer types, the potential for some of the microplastics to originate from materials used in the water network and domestic plumbing systems cannot be ruled out. As found before, the absolute number of microplastics in the water distribution network remained extremely low.

2.
Metallomics ; 13(1)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33570134

RESUMO

Cerium (Ce) is a rare earth element that is incorporated in numerous consumer products, either in its cationic form or as engineered nanoparticles (ENPs). Given the propensity of small oxide particles to dissolve, it is unclear whether biological responses induced by ENPs will be due to the nanoparticles themselves or rather due to their dissolution. This study provides the foundation for the development of transcriptomic biomarkers that are specific for ionic Ce in the freshwater alga, Chlamydomonas reinhardtii, exposed either to ionic Ce or to two different types of small Ce ENPs (uncoated, ∼10 nm, or citrate-coated, ∼4 nm). Quantitative reverse transcription PCR was used to analyse mRNA levels of four ionic Ce-specific genes (Cre17g.737300, MMP6, GTR12, and HSP22E) that were previously identified by whole transcriptome analysis in addition to two oxidative stress biomarkers (APX1 and GPX5). Expression was characterized for exposures to 0.03-3 µM Ce, for 60-360 min and for pH 5.0-8.0. Near-linear concentration-response curves were obtained for the ionic Ce and as a function of exposure time. Some variability in the transcriptomic response was observed as a function of pH, which was attributed to the formation of metastable Ce species in solution. Oxidative stress biomarkers analysed at transcriptomic and cellular levels confirmed that different effects were induced for dissolved Ce in comparison to Ce ENPs. The measured expression levels confirmed that changes in Ce speciation and the dissolution of Ce ENPs greatly influence Ce bioavailability.


Assuntos
Cério/química , Chlamydomonas reinhardtii/metabolismo , Nanopartículas Metálicas/química , Transcriptoma , Disponibilidade Biológica , Biomarcadores/metabolismo , Cério/farmacocinética , Relação Dose-Resposta a Droga , Concentração de Íons de Hidrogênio , Íons , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Solubilidade
3.
Environ Pollut ; 287: 117594, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34175518

RESUMO

In order to better understand the environmental risks of the rare earth elements (REEs), it is necessary to determine their fate and biological effects under environmentally relevant conditions (e.g. at low concentrations, REE mixtures). Here, the unicellular freshwater microalga, Chlamydomonas reinhardtii, was exposed for 2 h to one of three soluble REEs (Ce, Tm, Y) salts at 0.5 µM or to an equimolar mixture of these REEs. RNA sequencing revealed common biological effects among the REEs. Known functions of the differentially expressed genes support effects of REEs on protein processing in the endoplasmic reticulum, phosphate transport and the homeostasis of Fe and Ca. The only stress response detected was related to protein misfolding in the endoplasmic reticulum. When the REEs were applied as a mixture, antagonistic effects were overwhelmingly observed with transcriptomic results suggesting that the REEs were initially competing with each other for bio-uptake. Metal biouptake results were consistent with this interpretation. These results suggest that the approach of government agencies to regulate the REEs using biological effects data from single metal exposures may be a largely conservative approach.


Assuntos
Chlamydomonas reinhardtii , Metais Terras Raras , Transporte Biológico , Chlamydomonas reinhardtii/genética , Água Doce , Metais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa