Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
PLoS Biol ; 19(4): e3001146, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33793545

RESUMO

General anesthesia is characterized by reversible loss of consciousness accompanied by transient amnesia. Yet, long-term memory impairment is an undesirable side effect. How different types of general anesthetics (GAs) affect the hippocampus, a brain region central to memory formation and consolidation, is poorly understood. Using extracellular recordings, chronic 2-photon imaging, and behavioral analysis, we monitor the effects of isoflurane (Iso), medetomidine/midazolam/fentanyl (MMF), and ketamine/xylazine (Keta/Xyl) on network activity and structural spine dynamics in the hippocampal CA1 area of adult mice. GAs robustly reduced spiking activity, decorrelated cellular ensembles, albeit with distinct activity signatures, and altered spine dynamics. CA1 network activity under all 3 anesthetics was different to natural sleep. Iso anesthesia most closely resembled unperturbed activity during wakefulness and sleep, and network alterations recovered more readily than with Keta/Xyl and MMF. Correspondingly, memory consolidation was impaired after exposure to Keta/Xyl and MMF, but not Iso. Thus, different anesthetics distinctly alter hippocampal network dynamics, synaptic connectivity, and memory consolidation, with implications for GA strategy appraisal in animal research and clinical settings.


Assuntos
Anestésicos/efeitos adversos , Hipocampo/efeitos dos fármacos , Consolidação da Memória/efeitos dos fármacos , Coluna Vertebral/efeitos dos fármacos , Anestesia/efeitos adversos , Anestésicos/farmacologia , Animais , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Fentanila/efeitos adversos , Fentanila/farmacologia , Hipocampo/citologia , Hipocampo/fisiologia , Isoflurano/efeitos adversos , Isoflurano/farmacologia , Ketamina/efeitos adversos , Ketamina/farmacologia , Masculino , Medetomidina/efeitos adversos , Medetomidina/farmacologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Midazolam/efeitos adversos , Midazolam/farmacologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Coluna Vertebral/fisiologia , Xilazina/efeitos adversos , Xilazina/farmacologia
2.
Proc Natl Acad Sci U S A ; 116(16): 7963-7972, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30923110

RESUMO

Ubiquitin C-terminal hydrolase L1 (UCH-L1) is one of the most abundant and enigmatic enzymes of the CNS. Based on existing UCH-L1 knockout models, UCH-L1 is thought to be required for the maintenance of axonal integrity, but not for neuronal development despite its high expression in neurons. Several lines of evidence suggest a role for UCH-L1 in mUB homeostasis, although the specific in vivo substrate remains elusive. Since the precise mechanisms underlying UCH-L1-deficient neurodegeneration remain unclear, we generated a transgenic mouse model of UCH-L1 deficiency. By performing biochemical and behavioral analyses we can show that UCH-L1 deficiency causes an acceleration of sensorimotor reflex development in the first postnatal week followed by a degeneration of motor function starting at periadolescence in the setting of normal cerebral mUB levels. In the first postnatal weeks, neuronal protein synthesis and proteasomal protein degradation are enhanced, with endoplasmic reticulum stress, and energy depletion, leading to proteasomal impairment and an accumulation of nondegraded ubiquitinated protein. Increased protein turnover is associated with enhanced mTORC1 activity restricted to the postnatal period in UCH-L1-deficient brains. Inhibition of mTORC1 with rapamycin decreases protein synthesis and ubiquitin accumulation in UCH-L1-deficient neurons. Strikingly, rapamycin treatment in the first 8 postnatal days ameliorates the neurological phenotype of UCH-L1-deficient mice up to 16 weeks, suggesting that early control of protein homeostasis is imperative for long-term neuronal survival. In summary, we identified a critical presymptomatic period during which UCH-L1-dependent enhanced protein synthesis results in neuronal strain and progressive loss of neuronal function.


Assuntos
Doenças Neurodegenerativas , Ubiquitina Tiolesterase , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/fisiologia
3.
J Neurosci ; 40(37): 7105-7118, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32817247

RESUMO

The hippocampus plays an essential role in learning. Each of the three major hippocampal subfields, dentate gyrus (DG), CA3, and CA1, has a unique function in memory formation and consolidation, and also exhibit distinct local field potential (LFP) signatures during memory consolidation processes in non-rapid eye movement (NREM) sleep. The classic LFP events of the CA1 region, sharp-wave ripples (SWRs), are induced by CA3 activity and considered to be an electrophysiological biomarker for episodic memory. In LFP recordings along the dorsal CA1-DG axis from sleeping male mice, we detected and classified two types of LFP events in the DG: high-amplitude dentate spikes (DSs), and a novel event type whose current source density (CSD) signature resembled that seen during CA1 SWR, but which, most often, occurred independently of them. Because we hypothesize that this event type is similarly induced by CA3 activity, we refer to it as dentate sharp wave (DSW). We show that both DSWs and DSs differentially modulate the electrophysiological properties of SWR and multiunit activity (MUA). Following two hippocampus-dependent memory tasks, DSW occurrence rates, ripple frequencies, and ripple and sharp wave (SW) amplitudes were increased in both, while SWR occurrence rates in dorsal CA1 increased only after the spatial task. Our results suggest that DSWs, like SWRs, are induced by CA3 activity and that DSWs complement SWRs as a hippocampal LFP biomarker of memory consolidation.SIGNIFICANCE STATEMENT Awake experience is consolidated into long-term memories during sleep. Memory consolidation crucially depends on sharp-wave ripples (SWRs), which are local field potential (LFP) patterns in hippocampal CA1 that increase after learning. The dentate gyrus (DG) plays a central role in the process of memory formation, prompting us to cluster sharp waves (SWs) in the DG [dentate SWs (DSWs)] during sleep. We show that both DSW coupling to CA1 SWRs, and their occurrence rates, robustly increase after learning trials. Our results suggest that the DG is directly affected by memory consolidation processes. DSWs may thus complement SWRs as a sensitive electrophysiological biomarker of memory consolidation in mice.


Assuntos
Ondas Encefálicas , Giro Denteado/fisiologia , Memória , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sono REM , Vigília
4.
Addict Biol ; 26(2): e12887, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32124535

RESUMO

Several studies in humans and rodents suggest an association between impulsivity and activity of the stress response on the one hand and addiction vulnerability on the other. The neural cell adhesion molecule (NCAM) has been related to several neuropsychiatric disorders in humans. Constitutively NCAM-deficient (-/-) mice display enhanced novelty-induced behavior and hyperfunction of the hypothalamic-pituitary-adrenal axis. Here we hypothesize that NCAM deficiency causes an altered response to cocaine. Cocaine-induced behaviors of NCAM-/- mice and wild-type (+/+) littermates were analyzed in the conditioned place preference (CPP) test. c-fos mRNA levels were investigated by quantitative polymerase chain reaction (qPCR) to measure neural activation after exposure to the cocaine-associated context. NCAM-/- mice showed an elevated cocaine-induced sensitization, enhanced CPP, impaired extinction, and potentiated cocaine-induced hyperlocomotion and CPP after extinction. NCAM-/- showed no potentiated CPP as compared with NCAM+/+ littermates when a natural rewarding stimulus (ie, an unfamiliar female) was used, suggesting that the behavioral alterations of NCAM-/- mice observed in the CPP test are specific to the effects of cocaine. Activation of the prefrontal cortex and nucleus accumbens induced by the cocaine-associated context was enhanced in NCAM-/- compared with NCAM+/+ mice. Finally, cocaine-induced behavior correlated positively with novelty-induced behavior and plasma corticosterone levels in NCAM-/- mice and negatively with NCAM mRNA levels in the hippocampus and nucleus accumbens in wild-type mice. Our findings indicate that NCAM deficiency affects cocaine-induced CPP in mice and support the view that hyperfunction of the stress response system and reactivity to novelty predict the behavioral responses to cocaine.


Assuntos
Cocaína/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Animais , Condicionamento Clássico , Corticosterona/sangue , Genes fos , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Moléculas de Adesão de Célula Nervosa , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , RNA Mensageiro
5.
Mol Psychiatry ; 24(9): 1329-1350, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-29467497

RESUMO

Atypical brain connectivity is a major contributor to the pathophysiology of neurodevelopmental disorders (NDDs) including autism spectrum disorders (ASDs). TAOK2 is one of several genes in the 16p11.2 microdeletion region, but whether it contributes to NDDs is unknown. We performed behavioral analysis on Taok2 heterozygous (Het) and knockout (KO) mice and found gene dosage-dependent impairments in cognition, anxiety, and social interaction. Taok2 Het and KO mice also have dosage-dependent abnormalities in brain size and neural connectivity in multiple regions, deficits in cortical layering, dendrite and synapse formation, and reduced excitatory neurotransmission. Whole-genome and -exome sequencing of ASD families identified three de novo mutations in TAOK2 and functional analysis in mice and human cells revealed that all the mutations impair protein stability, but they differentially impact kinase activity, dendrite growth, and spine/synapse development. Mechanistically, loss of Taok2 activity causes a reduction in RhoA activation, and pharmacological enhancement of RhoA activity rescues synaptic phenotypes. Together, these data provide evidence that TAOK2 is a neurodevelopmental disorder risk gene and identify RhoA signaling as a mediator of TAOK2-dependent synaptic development.


Assuntos
Transtorno do Espectro Autista/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Adulto , Animais , Ansiedade/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/psicologia , Criança , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/psicologia , Dendritos/metabolismo , Dendritos/patologia , Feminino , Humanos , Relações Interpessoais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Transtornos do Neurodesenvolvimento/psicologia , Neurogênese , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Transmissão Sináptica , Sequenciamento do Exoma
6.
Learn Mem ; 24(12): 650-659, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29142062

RESUMO

The serine protease inhibitor neuroserpin regulates the activity of tissue-type plasminogen activator (tPA) in the nervous system. Neuroserpin expression is particularly prominent at late stages of neuronal development in most regions of the central nervous system (CNS), whereas it is restricted to regions related to learning and memory in the adult brain. The physiological expression pattern of neuroserpin, its high degree of colocalization with tPA within the CNS, together with its dysregulation in neuropsychiatric disorders, suggest a role in formation and refinement of synapses. In fact, studies in cell culture and mice point to a role for neuroserpin in dendritic branching, spine morphology, and modulation of behavior. In this study, we investigated the physiological role of neuroserpin in the regulation of synaptic density, synaptic plasticity, and behavior in neuroserpin-deficient mice. In the absence of neuroserpin, mice show a significant decrease in spine-synapse density in the CA1 region of the hippocampus, while expression of the key postsynaptic scaffold protein PSD-95 is increased in this region. Neuroserpin-deficient mice show decreased synaptic potentiation, as indicated by reduced long-term potentiation (LTP), whereas presynaptic paired-pulse facilitation (PPF) is unaffected. Consistent with altered synaptic plasticity, neuroserpin-deficient mice exhibit cognitive and sociability deficits in behavioral assays. However, although synaptic dysfunction is implicated in neuropsychiatric disorders, we do not detect alterations in expression of neuroserpin in fusiform gyrus of autism patients or in dorsolateral prefrontal cortex of schizophrenia patients. Our results identify neuroserpin as a modulator of synaptic plasticity, and point to a role for neuroserpin in learning and memory.


Assuntos
Regulação da Expressão Gênica/genética , Plasticidade Neuronal/genética , Neuropeptídeos/deficiência , Inibidores de Serina Proteinase/metabolismo , Serpinas/deficiência , Comportamento Social , Sinapses/genética , Adolescente , Adulto , Animais , Transtorno Autístico/genética , Transtorno Autístico/patologia , Transtorno Autístico/psicologia , Criança , Comportamento Exploratório/fisiologia , Hipocampo/fisiologia , Hipocampo/ultraestrutura , Humanos , Potenciação de Longa Duração/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Neuropeptídeos/genética , Serpinas/genética , Sinapses/fisiologia , Sinapses/ultraestrutura , Proteína 25 Associada a Sinaptossoma/metabolismo , Adulto Jovem , Neuroserpina
7.
Proc Natl Acad Sci U S A ; 110(26): E2428-36, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23754384

RESUMO

Traumatic events can engender persistent excessive fear responses to trauma reminders that may return even after successful treatment. Extinction, the laboratory analog of behavior therapy, does not erase conditioned fear memories but generates competing, fear-inhibitory "extinction memories" that, however, are tied to the context in which extinction occurred. Accordingly, a dominance of fear over extinction memory expression--and, thus, return of fear--is often observed if extinguished fear stimuli are encountered outside the extinction (therapy) context. We show that postextinction administration of the dopamine precursor L-dopa makes extinction memories context-independent, thus strongly reducing the return of fear in both mice and humans. Reduced fear is accompanied by decreased amygdala and enhanced ventromedial prefrontal cortex activation in both species. In humans, ventromedial prefrontal cortex activity is predicted by enhanced resting-state functional coupling of the area with the dopaminergic midbrain during the postextinction consolidation phase. Our data suggest that dopamine-dependent boosting of extinction memory consolidation is a promising avenue to improving anxiety therapy.


Assuntos
Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Levodopa/administração & dosagem , Memória/efeitos dos fármacos , Adulto , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Animais , Extinção Psicológica/fisiologia , Medo/fisiologia , Humanos , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia
8.
Hum Mol Genet ; 22(1): 110-23, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23026748

RESUMO

Phosphorylated creatine (Cr) serves as an energy buffer for ATP replenishment in organs with highly fluctuating energy demand. The central role of Cr in the brain and muscle is emphasized by severe neurometabolic disorders caused by Cr deficiency. Common symptoms of inborn errors of creatine synthesis or distribution include mental retardation and muscular weakness. Human mutations in l-arginine:glycine amidinotransferase (AGAT), the first enzyme of Cr synthesis, lead to severely reduced Cr and guanidinoacetate (GuA) levels. Here, we report the generation and metabolic characterization of AGAT-deficient mice that are devoid of Cr and its precursor GuA. AGAT-deficient mice exhibited decreased fat deposition, attenuated gluconeogenesis, reduced cholesterol levels and enhanced glucose tolerance. Furthermore, Cr deficiency completely protected from the development of metabolic syndrome caused by diet-induced obesity. Biochemical analyses revealed the chronic Cr-dependent activation of AMP-activated protein kinase (AMPK), which stimulates catabolic pathways in metabolically relevant tissues such as the brain, skeletal muscle, adipose tissue and liver, suggesting a mechanism underlying the metabolic phenotype. In summary, our results show marked metabolic effects of Cr deficiency via the chronic activation of AMPK in a first animal model of AGAT deficiency. In addition to insights into metabolic changes in Cr deficiency syndromes, our genetic model reveals a novel mechanism as a potential treatment option for obesity and type 2 diabetes mellitus.


Assuntos
Amidinotransferases/genética , Síndrome Metabólica/genética , Adenilato Quinase/metabolismo , Tecido Adiposo , Animais , Peso Corporal , Encéfalo/metabolismo , Creatina/metabolismo , Ativação Enzimática , Hipotálamo/enzimologia , Espectroscopia de Ressonância Magnética , Síndrome Metabólica/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação
9.
J Neurosci ; 33(3): 1038-43, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23325241

RESUMO

Episodic memory is relevant for auto-consciousness in humans. In nonhuman animals, episodic-like memory is defined when the "what-where-when" content of a unique event forms an integrated cognitive representation that is then deployed during memory retrieval. Here, we aimed at testing episodic-like memories of mice under experimental conditions that allow the analysis of whether and how mice process what-where-when information. Using an ecologically relevant paradigm for spontaneous learning and memory, we show that mice modulate their behavior based on the what, where, and when components of past unique episodes, specifically on previous encounters of conspecifics at a defined location and at a specific time of the day. We also show that learning during this paradigm activated Arc/Arg3.1 mRNA expression in the hippocampus and that stereotactic injection of anisomycin into this region impairs memory consolidation. Thus, hippocampus-dependent episodic-like memories of single experiences are spontaneously created in mice. These findings extend our knowledge of the cognitive capacities of the mouse and suggest that this species can be used as model for studying the mechanisms underlying human episodic memory and related neurological disorders.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Animais , Anisomicina/farmacologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Expressão Gênica , Hipocampo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Cell Tissue Res ; 354(1): 273-86, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23793547

RESUMO

The analysis of spatial learning and memory in rodents is commonly used to investigate the mechanisms underlying certain forms of human cognition and to model their dysfunction in neuropsychiatric and neurodegenerative diseases. Proper interpretation of rodent behavior in terms of spatial memory and as a model of human cognitive functions is only possible if various navigation strategies and factors controlling the performance of the animal in a spatial task are taken into consideration. The aim of this review is to describe the experimental approaches that are being used for the study of spatial memory in rats and mice and the way that they can be interpreted in terms of general memory functions. After an introduction to the classification of memory into various categories and respective underlying neuroanatomical substrates, I explain the concept of spatial memory and its measurement in rats and mice by analysis of their navigation strategies. Subsequently, I describe the most common paradigms for spatial memory assessment with specific focus on methodological issues relevant for the correct interpretation of the results in terms of cognitive function. Finally, I present recent advances in the use of spatial memory tasks to investigate episodic-like memory in mice.


Assuntos
Cognição/fisiologia , Memória/fisiologia , Modelos Animais , Animais , Humanos , Camundongos , Ratos , Roedores
11.
J Endocrinol ; 258(3)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37399525

RESUMO

Estrogens regulate synaptic properties and influence hippocampus-related learning and memory via estrogen receptors, which include the G-protein-coupled estrogen receptor 1 (GPER1). Studying mice, in which the GPER1 gene is dysfunctional (GPER1-KO), we here provide evidence for sex-specific roles of GPER1 in these processes. GPER1-KO males showed reduced anxiety in the elevated plus maze, whereas the fear response ('freezing') was specifically increased in GPER1-KO females in a contextual fear conditioning paradigm. In the Morris water maze, spatial learning and memory consolidation was impaired by GPER1 deficiency in both sexes. Notably, in the females, spatial learning deficits and the fear response were more pronounced if mice were in a stage of the estrous cycle, in which E2 serum levels are high (proestrus) or rising (diestrus). On the physiological level, excitability at Schaffer collateral synapses in CA1 increased in GPER1-deficient males and in proestrus/diestrus ('E2 high') females, concordant with an increased hippocampal expression of the AMPA-receptor subunit GluA1 in GPER1-KO males and females as compared to wildtype males. Further changes included an augmented early long-term potentiation (E-LTP) maintenance specifically in GPER1-KO females and an increased hippocampal expression of spinophilin in metestrus/estrus ('E2 low') GPER1-KO females. Our findings suggest modulatory and sex-specific functions of GPER1 in the hippocampal network, which reduce rather than increase neuronal excitability. Dysregulation of these functions may underlie sex-specific cognitive deficits or mood disorders.


Assuntos
Hipocampo , Receptores de Estrogênio , Masculino , Feminino , Camundongos , Animais , Receptores de Estrogênio/genética , Potenciação de Longa Duração/genética , Sinapses/fisiologia , Cognição , Plasticidade Neuronal/genética
12.
Front Cell Neurosci ; 16: 912030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846561

RESUMO

Adenine nucleotides, such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), as well as the nucleoside adenosine are important modulators of neuronal function by engaging P1 and P2 purinergic receptors. In mitral cells, signaling of the G protein-coupled P1 receptor adenosine 1 receptor (A1R) affects the olfactory sensory pathway by regulating high voltage-activated calcium channels and two-pore domain potassium (K2P) channels. The inflammation of the central nervous system (CNS) impairs the olfactory function and gives rise to large amounts of extracellular ATP and adenosine, which act as pro-inflammatory and anti-inflammatory mediators, respectively. However, it is unclear whether neuronal A1R in the olfactory bulb modulates the sensory function and how this is impacted by inflammation. Here, we show that signaling via neuronal A1R is important for the physiological olfactory function, while it cannot counteract inflammation-induced hyperexcitability and olfactory deficit. Using neuron-specific A1R-deficient mice in patch-clamp recordings, we found that adenosine modulates spontaneous dendro-dendritic signaling in mitral and granule cells via A1R. Furthermore, neuronal A1R deficiency resulted in olfactory dysfunction in two separate olfactory tests. In mice with experimental autoimmune encephalomyelitis (EAE), we detected immune cell infiltration and microglia activation in the olfactory bulb as well as hyperexcitability of mitral cells and olfactory dysfunction. However, neuron-specific A1R activity was unable to attenuate glutamate excitotoxicity in the primary olfactory bulb neurons in vitro or EAE-induced olfactory dysfunction and disease severity in vivo. Together, we demonstrate that A1R modulates the dendro-dendritic inhibition (DDI) at the site of mitral and granule cells and impacts the processing of the olfactory sensory information, while A1R activity was unable to counteract inflammation-induced hyperexcitability.

13.
Nat Commun ; 13(1): 6376, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289226

RESUMO

Mice display signs of fear when neurons that express cFos during fear conditioning are artificially reactivated. This finding gave rise to the notion that cFos marks neurons that encode specific memories. Here we show that cFos expression patterns in the mouse dentate gyrus (DG) change dramatically from day to day in a water maze spatial learning paradigm, regardless of training level. Optogenetic inhibition of neurons that expressed cFos on the first training day affected performance days later, suggesting that these neurons continue to be important for spatial memory recall. The mechanism preventing repeated cFos expression in DG granule cells involves accumulation of ΔFosB, a long-lived splice variant of FosB. CA1 neurons, in contrast, repeatedly expressed cFos. Thus, cFos-expressing granule cells may encode new features being added to the internal representation during the last training session. This form of timestamping is thought to be required for the formation of episodic memories.


Assuntos
Giro Denteado , Aprendizagem Espacial , Animais , Camundongos , Giro Denteado/fisiologia , Hipocampo , Neurônios/metabolismo , Memória Espacial
14.
Cereb Cortex ; 20(11): 2712-27, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20194688

RESUMO

The balance between excitation and inhibition controls fundamental aspects of the hippocampal function. Here, we report an increase in the ratio of inhibitory to excitatory neurons in the dentate gyrus, accompanied by γ-aminobutyric acid(A) (GABA(A)) receptor-dependent impairment of synaptic plasticity and enhancement of activity-dependent changes in excitability in anesthetized adult mice deficient for the extracellular matrix glycoprotein tenascin-R (TNR). TNR-deficient mice showed faster reversal learning, improved working memory, and enhanced reactivity to novelty than wild-type littermates. Remarkably, in wild-type and TNR-deficient mice, faster reversal learning rates correlated at the individual animal level with ratios of parvalbumin-positive interneurons to granule cells and densities of parvalbumin-positive terminals on somata of granule cells. Our data demonstrate that modification of the extracellular matrix by ablation of TNR leads to a new structural and functional design of the dentate gyrus, with enhanced GABAergic innervation, that is, enhanced ratio of inhibitory to excitatory cells, and altered plasticity, promoting working memory and reversal learning. In wild-type mice, the enhanced ratio of inhibitory to excitatory cells in the dentate gyrus also positively correlated with reversal learning, indicating that level of inhibition regulates specific aspects of learning independent of the TNR gene.


Assuntos
Giro Denteado/fisiologia , Interneurônios/metabolismo , Tenascina/deficiência , Tenascina/genética , Ácido gama-Aminobutírico/fisiologia , Animais , Cognição/fisiologia , Giro Denteado/citologia , Giro Denteado/patologia , Interneurônios/citologia , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibição Neural/fisiologia , Ácido gama-Aminobutírico/metabolismo
15.
Mol Neurobiol ; 58(11): 5618-5634, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34383253

RESUMO

In neuronal cells, many membrane receptors interact via their intracellular, C-terminal tails with PSD-95/discs large/ZO-1 (PDZ) domain proteins. Some PDZ proteins act as scaffold proteins. In addition, there are a few PDZ proteins such as Gopc which bind to receptors during intracellular transport. Gopc is localized at the trans-Golgi network (TGN) and binds to a variety of receptors, many of which are eventually targeted to postsynaptic sites. We have analyzed the role of Gopc by knockdown in primary cultured neurons and by generating a conditional Gopc knockout (KO) mouse line. In neurons, targeting of neuroligin 1 (Nlgn1) and metabotropic glutamate receptor 5 (mGlu5) to the plasma membrane was impaired upon depletion of Gopc, whereas NMDA receptors were not affected. In the hippocampus and cortex of Gopc KO animals, expression levels of Gopc-associated receptors were not altered, while their subcellular localization was disturbed. The targeting of mGlu5 to the postsynaptic density was reduced, coinciding with alterations in mGluR-dependent synaptic plasticity and deficiencies in a contextual fear conditioning paradigm. Our data imply Gopc in the correct subcellular sorting of its associated mGlu5 receptor in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Transporte/fisiologia , Proteínas da Matriz do Complexo de Golgi/fisiologia , Transporte Proteico/fisiologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Membranas Sinápticas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Condicionamento Clássico , Medo/fisiologia , Feminino , Regulação da Expressão Gênica , Proteínas da Matriz do Complexo de Golgi/deficiência , Hipocampo/citologia , Masculino , Camundongos , Camundongos Knockout , Teste do Labirinto Aquático de Morris , Teste de Campo Aberto , Densidade Pós-Sináptica/metabolismo , Cultura Primária de Células , RNA Interferente Pequeno/farmacologia , Ratos , Frações Subcelulares/metabolismo
16.
Hippocampus ; 20(9): 1027-36, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19739230

RESUMO

The growth arrest specific 5 (gas5) is a noncoding protein gene that hosts small nucleolar RNAs. Based on the observation that gas5 RNA level in the brain is highest in the hippocampus and remarkably enhanced in aged mice, we tested the hypothesis that gas5 is involved in functions controlled by the hippocampus and known to be affected by age, such as spatial learning and novelty-induced behaviors. We show that aged (22-month-old) C57BL/6 male mice have spatial-learning impairments, reduced novelty-induced exploration, and enhanced gas5 RNA levels in the hippocampus compared to young (3-month-old) mice. At both ages, levels of gas5 RNA in the hippocampus negatively correlated with novelty-induced exploration in the open field and elevated-plus maze tests. No correlations were found between gas5 RNA levels in the hippocampus and performance in the water maze test. The expression of gas5 RNA in the rest of the brain did not correlate with any behavioral parameter analyzed. Because variations in novelty-induced behaviors could be caused by stressfull experiences, we analyzed whether gas5 RNA levels in the hippocampus are regulated by acute stressors. We found that gas5 RNA levels in the hippocampus were upregulated by 50% 24 h after a psychogenic stressor (60-min olfactory contact with a rat) but were unchanged after exposure to an unfamiliar environment or after acquisition of new spatial information in a one-trial learning task. The present results suggest that strong psychogenic stressors upregulate gas5 RNA in the hippocampus, which in turn affects novelty-induced responses controlled by this region. We hypothesize that long-life exposure to stressors causes an age-dependent increase in hippocampal gas5 RNA levels, which could be responsible for age-related reduced novelty-induced behaviors, thus suggesting a new mechanism by which ageing and stress affect hippocampal function.


Assuntos
Envelhecimento/genética , Comportamento Animal/fisiologia , Regulação para Baixo/genética , Comportamento Exploratório/fisiologia , Hipocampo/fisiologia , RNA Nucleolar Pequeno/biossíntese , Estresse Psicológico/genética , Regulação para Cima/genética , Envelhecimento/psicologia , Animais , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Nucleolar Pequeno/genética
17.
Neurosci Lett ; 735: 135206, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32593773

RESUMO

Inositol-1,4,5-trisphosphate 3-kinase-A (ITPKA) is the neuronal isoform of ITPKs and exhibits both actin bundling and InsP3kinase activity. In addition to neurons, ITPKA is ectopically expressed in tumor cells, where its oncogenic activity increases tumor cell malignancy. In order to analyze the physiological relevance of ITPKA, here we performed a broad phenotypic screening of itpka deficient mice. Our data show that among the neurobehavioral tests analyzed, itpka deficient mice reacted faster to a hotplate, prepulse inhibition was impaired and the accelerating rotarod test showed decreased latency of itpka deficient mice to fall. These data indicate that ITPKA is involved in the regulation of nociceptive pathways, sensorimotor gating and motor learning. Analysis of extracerebral functions in control and itpka deficient mice revealed significantly reduced glucose, lactate, and triglyceride plasma concentrations in itpka deficient mice. Based on this finding, expression of ITPKA was analyzed in extracerebral tissues and the highest level was found in the small intestine. However, functional studies on CaCo-2 control and ITPKA depleted cells showed that glucose, as well as triglyceride uptake, were not significantly different between the cell lines. Altogether, these data show that ITPKA exhibits distinct functions in the central nervous system and reveal an involvement of ITPKA in energy metabolism.


Assuntos
Neurônios/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Inibição Pré-Pulso/fisiologia , Animais , Células CACO-2 , Feminino , Humanos , Isoenzimas/deficiência , Isoenzimas/genética , Masculino , Camundongos , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/genética
18.
Dis Model Mech ; 13(11)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33023972

RESUMO

Mucolipidosis type III (MLIII) gamma is a rare inherited lysosomal storage disorder caused by mutations in GNPTG encoding the γ-subunit of GlcNAc-1-phosphotransferase, the key enzyme ensuring proper intracellular location of multiple lysosomal enzymes. Patients with MLIII gamma typically present with osteoarthritis and joint stiffness, suggesting cartilage involvement. Using Gnptg knockout (Gnptgko ) mice as a model of the human disease, we showed that missorting of a number of lysosomal enzymes is associated with intracellular accumulation of chondroitin sulfate in Gnptgko chondrocytes and their impaired differentiation, as well as with altered microstructure of the cartilage extracellular matrix (ECM). We also demonstrated distinct functional and structural properties of the Achilles tendons isolated from Gnptgko and Gnptab knock-in (Gnptabki ) mice, the latter displaying a more severe phenotype resembling mucolipidosis type II (MLII) in humans. Together with comparative analyses of joint mobility in MLII and MLIII patients, these findings provide a basis for better understanding of the molecular reasons leading to joint pathology in these patients. Our data suggest that lack of GlcNAc-1-phosphotransferase activity due to defects in the γ-subunit causes structural changes within the ECM of connective and mechanosensitive tissues, such as cartilage and tendon, and eventually results in functional joint abnormalities typically observed in MLIII gamma patients. This idea was supported by a deficit of the limb motor function in Gnptgko mice challenged on a rotarod under fatigue-associated conditions, suggesting that the impaired motor performance of Gnptgko mice was caused by fatigue and/or pain at the joint.This article has an associated First Person interview with the first author of the paper.


Assuntos
Cartilagem/patologia , Homeostase , Articulações/patologia , Mucolipidoses/metabolismo , Mucolipidoses/patologia , Tendão do Calcâneo/patologia , Tendão do Calcâneo/ultraestrutura , Envelhecimento/patologia , Animais , Cartilagem/ultraestrutura , Diferenciação Celular , Condrócitos/metabolismo , Condrócitos/patologia , Condrócitos/ultraestrutura , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Colágenos Fibrilares/metabolismo , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Mucolipidoses/fisiopatologia , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
19.
Transl Psychiatry ; 9(1): 7, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30664629

RESUMO

In humans, genetic variants of DLGAP1-4 have been linked with neuropsychiatric conditions, including autism spectrum disorder (ASD). While these findings implicate the encoded postsynaptic proteins, SAPAP1-4, in the etiology of neuropsychiatric conditions, underlying neurobiological mechanisms are unknown. To assess the contribution of SAPAP4 to these disorders, we characterized SAPAP4-deficient mice. Our study reveals that the loss of SAPAP4 triggers profound behavioural abnormalities, including cognitive deficits combined with impaired vocal communication and social interaction, phenotypes reminiscent of ASD in humans. These behavioural alterations of SAPAP4-deficient mice are associated with dramatic changes in synapse morphology, function and plasticity, indicating that SAPAP4 is critical for the development of functional neuronal networks and that mutations in the corresponding human gene, DLGAP4, may cause deficits in social and cognitive functioning relevant to ASD-like neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista/genética , Disfunção Cognitiva/genética , Proteínas do Tecido Nervoso/genética , Proteínas Associadas SAP90-PSD95/genética , Animais , Comportamento Animal , Modelos Animais de Doenças , Feminino , Relações Interpessoais , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Comportamento Social , Sinapses/metabolismo
20.
Behav Brain Res ; 191(2): 280-4, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18468704

RESUMO

It is generally accepted that different brain regions regulate specific behavioral responses and that structural alterations in these regions may affect behavior. We investigated whether inter-individual variability in novelty-induced behaviors in C57BL/6J mice correlates with numbers of noradrenergic neurons in the locus coeruleus and cholinergic neurons in the septum. We found that exploration of new stimuli correlated negatively with numbers of noradrenergic neurons, whereas anxiety correlated positively with numbers of cholinergic neurons. The observed correlations suggest physiologically plausible links between structure and function and indicate that precise morphological estimates can be predictive for behavioral responses.


Assuntos
Acetilcolina/metabolismo , Comportamento Exploratório/fisiologia , Locus Cerúleo/citologia , Neurônios/metabolismo , Norepinefrina/metabolismo , Septo Pelúcido/citologia , Animais , Comportamento Animal , Contagem de Células , Comportamento de Escolha , Colina O-Acetiltransferase/metabolismo , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Estatísticas não Paramétricas , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa