Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
BMC Vet Res ; 20(1): 222, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38783269

RESUMO

BACKGROUND: Biomedtrix BFX® cementless total hip replacement (THR) requires the use of femoral broaches to prepare a press-fit envelope within the femur for subsequent stem insertion. Current broaches contain teeth that crush and remove cancellous bone; however, they are not particularly well-suited for broaching sclerotic (corticalized) cancellous bone. In this study, three tooth designs [Control, TG1 (additional V-grooves), TG2 (diamond tooth pattern)] were evaluated with a quasi-static testing protocol and polyurethane test blocks simulating normal and sclerotic bone. To mimic clinical broaching, a series of five sequential broach insertions were used to determine cumulative broaching energy (J) and peak loads during broach insertion. To determine the effect of broach tooth design on THR stem insertion, a BFX® stem was inserted into prepared test blocks and insertion and subsidence energy and peak loads were determined. RESULTS: Broach tooth design led to significant differences in broaching energy and peak broaching loads in test blocks of both densities. In low density test blocks, TG1 required the lowest cumulative broaching energy (10.76 ±0.29 J), followed by Control (12.18 ±1.20 J) and TG2 (16.66 ±0.78 J) broaches. In high density test blocks, TG1 required the lowest cumulative broaching energy (32.60 ±2.54 J) as compared to Control (33.25 ±2.16 J) and TG2 (59.97 ±3.07 J).  During stem insertion and subsidence testing, stem insertion energy for high density test blocks prepared with Control broaches was 14.53 ± 0.81 J, which was significantly lower than blocks prepared with TG1 (22.53 ± 1.04 J) or TG2 (19.38 ± 3.00 J) broaches. For stem subsidence testing in high density blocks, TG1 prepared blocks required the highest amount of energy to undergo subsidence (14.49 ± 0.49 J), which was significantly greater than test blocks prepared with Control (11.09 ±0.09 J) or TG2 (12.57 ± 0.81 J) broaches. CONCLUSIONS: The additional V-grooves in TG1 broaches demonstrated improved broaching performance while also generating press-fit envelopes that were more resistant to stem insertion and subsidence. TG1 broaches may prove useful in the clinical setting; however additional studies that more closely simulate clinical broach impaction are necessary prior to making widespread changes to THR broaches.


Assuntos
Artroplastia de Quadril , Artroplastia de Quadril/veterinária , Artroplastia de Quadril/instrumentação , Artroplastia de Quadril/métodos , Animais , Cães/cirurgia , Prótese de Quadril/veterinária , Fenômenos Biomecânicos , Fêmur/cirurgia
2.
Artif Organs ; 48(4): 375-385, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37962282

RESUMO

BACKGROUND: Hemocompatibility-related adverse events (HRAE) occur commonly in patients with left ventricular assist devices (LVADs) and add to morbidity and mortality. It is unclear whether the outflow graft orientation can impact flow conditions leading to HRAE. This study presents a simulation-based approach using exact patient anatomy from medical images to investigate the influence of outflow cannula orientation in modulating flow conditions leading to HRAEs. METHODS: A 3D model of a proximal aorta and outflow graft was reconstructed from a computed tomography (CT) scan of an LVAD patient and virtually modified to model multiple cannula orientations (n = 10) by varying polar (cranio-caudal) (n = 5) and off-set (anterior-posterior) (n = 2) angles. Time-dependent computational flow simulations were then performed for each anatomical orientation. Qualitative and quantitative hemodynamics metrics of thrombogenicity including time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), endothelial cell platelet activation potential (ECAP), particle residence time (PRT), and platelet activation potential (PLAP) were analyzed. RESULTS: Within the simulations performed, endothelial cell activation potential (ECAP) and particle residence time (PRT) were found to be lowest with a polar angle of 85°, regardless of offset angle. However, polar angles that produced parameters at levels least associated with thrombosis varied when the offset angle was changed from 0° to 12°. For offset angles of 0° and 12° respectively, flow shear was lowest at 65° and 75°, time averaged wall shear stress (TAWSS) was highest at 85° and 35°, and platelet activation potential (PLAP) was lowest at 65° and 45°. CONCLUSION: This study suggests that computational fluid dynamic modeling based on patient-specific anatomy can be a powerful analytical tool when identifying optimal positioning of an LVAD. Contrary to previous work, our findings suggest that there may be an "ideal" outflow cannula for each individual patient based on a CFD-based hemocompatibility profile.


Assuntos
Coração Auxiliar , Trombose , Humanos , Coração Auxiliar/efeitos adversos , Modelos Cardiovasculares , Hidrodinâmica , Aorta/fisiologia , Trombose/etiologia , Hemodinâmica/fisiologia
3.
J Shoulder Elbow Surg ; 32(6): e279-e292, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36933646

RESUMO

BACKGROUND: Recent evidence indicates that combined upper extremity blood flow restriction (BFR, applied distally to the shoulder) and low-load resistance exercise (LIX) augments clinically meaningful responses in shoulder region tissues proximal to the occlusion site. The purpose of this investigation was to determine the efficacy of BFR-LIX for the shoulder when added to standard offseason training in Division IA collegiate baseball pitchers. We hypothesized that BFR-LIX would augment training-induced increases in shoulder-region lean mass, rotator cuff strength, and endurance. As secondary outcomes, we sought to explore the impact of BFR-LIX rotator cuff training on pitching mechanics. METHODS: Twenty-eight collegiate baseball pitchers were randomized into 2 groups (BFRN = 15 and non-BFR [NOBFR]N = 13) that, in conjunction with offseason training, performed 8 weeks of shoulder LIX (Throwing arm only; 2/week, 4 sets [30/15/15/fatigue], 20% isometric max) using 4 exercises (cable external and internal rotation [ER/IR], dumbbell scaption, and side-lying dumbbell ER). The BFR group also trained with an automated tourniquet on the proximal arm (50% occlusion). Regional lean mass (dual-energy x-ray absorptiometry), rotator cuff strength (dynamometry: IR 0 & 90, ° ER 0 & 90, ° Scaption, Flexion), and fastball biomechanics were assessed pre and post-training. Achievable workload (sets × reps × resistance) was also recorded. An ANCOVA (covaried on baseline measures) repeated on training timepoint was used to detect within-group and between-group differences in outcome measures (α = 0.05). For significant pairwise comparisons, effect size (ES) was calculated using a Cohen's d statistic and interpreted as: 0-0.1, negligible; 0.1-0.3, small; 0.3-0.5, moderate; 0.5-0.7, large; >0.7, and very large (VL). RESULTS: Following training, the BFR group experienced greater increases in shoulder-region lean mass (BFR: ↑ 227 ± 60g, NOBFR: ↑ 75 ± 37g, P = .018, ES = 1.0 VL) and isometric strength for IR 90 ° (↑ 2.4 ± 2.3 kg, P = .041, ES = 0.9VL). The NOBFR group experienced decreased shoulder flexion ↓ 1.6 ± 0.8 kg, P = .007, ES = 1.4VL) and IR at 0 ° ↓ 2.9 ± 1.5 kg, P = .004, ES = 1.1VL). The BFR group had a greater increase in achievable workload for the scaption exercise (BFR: ↑ 190 ± 3.2 kg, NOBFR: ↑ 90 ± 3.3 kg, P = .005, ES = 0.8VL). Only the NOBFR group was observed to experience changes in pitching mechanics following training with increased shoulder external rotation at lead foot contact (↑ 9.0° ± 7.9, P = .028, ES = 0.8VL) as well as reduced forward ↓ 3.6° ± 2.1, P = .001, ES = 1.2VL) and lateral ↓ 4.6° ± 3.4, P = .007, ES = 1.0VL) trunk tilt at ball release. CONCLUSION: BFR-LIX rotator cuff training performed in conjunction with a collegiate offseason program augments increases in shoulder lean mass as well as muscular endurance while maintaining rotator cuff strength and possibly pitching mechanics in a manner that may contribute to favorable outcomes and injury prevention in baseball pitching athletes.


Assuntos
Beisebol , Articulação do Ombro , Extremidade Superior , Humanos , Beisebol/lesões , Fenômenos Biomecânicos/fisiologia , Extremidade Inferior , Manguito Rotador/fisiologia , Ombro/fisiologia , Articulação do Ombro/fisiologia , Extremidade Superior/irrigação sanguínea
5.
J Biomech Eng ; 137(4): 040801, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25378106

RESUMO

The most common cause of death in the developed world is cardiovascular disease. For decades, this has provided a powerful motivation to study the effects of mechanical forces on vascular cells in a controlled setting, since these cells have been implicated in the development of disease. Early efforts in the 1970 s included the first use of a parallel-plate flow system to apply shear stress to endothelial cells (ECs) and the development of uniaxial substrate stretching techniques (Krueger et al., 1971, "An in Vitro Study of Flow Response by Cells," J. Biomech., 4(1), pp. 31-36 and Meikle et al., 1979, "Rabbit Cranial Sutures in Vitro: A New Experimental Model for Studying the Response of Fibrous Joints to Mechanical Stress," Calcif. Tissue Int., 28(2), pp. 13-144). Since then, a multitude of in vitro devices have been designed and developed for mechanical stimulation of vascular cells and tissues in an effort to better understand their response to in vivo physiologic mechanical conditions. This article reviews the functional attributes of mechanical bioreactors developed in the 21st century, including their major advantages and disadvantages. Each of these systems has been categorized in terms of their primary loading modality: fluid shear stress (FSS), substrate distention, combined distention and fluid shear, or other applied forces. The goal of this article is to provide researchers with a survey of useful methodologies that can be adapted to studies in this area, and to clarify future possibilities for improved research methods.


Assuntos
Vasos Sanguíneos , Técnicas Citológicas/instrumentação , Fenômenos Mecânicos , Animais , Fenômenos Biomecânicos , Humanos , Estresse Mecânico
6.
J Biomech Eng ; 136(8)2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24805843

RESUMO

Understanding how polymers such as PLLA degrade in vivo will enhance biodegradable stent design. This study examined the effect of static and dynamic loads on PLLA stent fibers in vitro. The stent fibers (generously provided by TissueGen, Inc.) were loaded axially with 0 N, 0.5 N, 1 N, or 0.125-0.25 N (dynamic group, 1 Hz) and degraded in PBS at 45 °C for an equivalent degradation time of 15 months. Degradation was quantified through changes in tensile mechanical properties. The mechanical behavior was characterized using the Knowles strain energy function and a degradation model. A nonsignificant increase in fiber stiffness was observed between 0 and 6 months followed by fiber softening thereafter. A marker of fiber softening, ß, increased between 9 and 15 months in all groups. At 15 months, the ß values in the dynamic group were significantly higher compared to the other groups. In addition, the model indicated that the degradation rate constant was smaller in the 1-N (0.257) and dynamic (0.283) groups compared to the 0.5-N (0.516) and 0-N (0.406) groups. While the shear modulus fluctuated throughout degradation, no significant differences were observed. Our results indicate that an increase in static load increased the degradation of mechanical properties and that the application of dynamic load further accelerated this degradation.


Assuntos
Ácido Láctico/química , Modelos Teóricos , Polímeros/química , Stents , Suporte de Carga , Poliésteres , Estresse Mecânico
7.
Vet Surg ; 43(7): 860-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24484218

RESUMO

OBJECTIVE: To compare the biomechanical properties of clamp rod internal fixation (CRIF)/rod and LC-DCP/rod constructs in a canine femoral gap model. STUDY DESIGN: Cadaveric biomechanical study. SAMPLE POPULATION: Canine femora (n = 10 pair). METHODS: Femora with 40 mm ostectomies were assigned to LC-DCP/rod or CRIF/rod treatment groups. Five construct pairs had 4-point bending and 5 pairs had torsional loading. Construct stiffness, strength, and bending angle at failure or permanent angular deformation (torsional loading) were determined. Statistical comparisons were performed using Student t tests; significance was set at P ≤ .05. RESULTS: There was significantly greater permanent angular deformation, or residual twist, in the CRIF/rod constructs (23.1 ± 0.89°) compared with LC-DCP/rod constructs (7.47 ± 2.08°). Whereas there was no significant difference in torsional stiffness of these constructs at torsional loads <4.92 N m (P = .819), LC-DCP/rod constructs had significantly greater torsional stiffness (0.303 ± 0.079 N m/°) and strength (11.546 ± 2.79 N m) than CRIF/rod construct stiffness (0.06 ± 0.013 N m/°) and strength (6.078 ± 0.527 N m) at torsional loads >4.92 N m. Differences in stiffness and strength in 4-point bending were not statistically significant. CONCLUSIONS: LC-DCP/rod constructs had significantly less permanent angular deformation than CRIF/rod constructs. CRIF/rod constructs became less stiff as torsional load was increased, thus the LC-DCP/rod constructs had significantly greater torsional stiffness and strength under high torsional loads. LC-DCP/rod and CRIF/rod constructs performed similarly under 4-point bend loading conditions.


Assuntos
Doenças do Cão/cirurgia , Fêmur/cirurgia , Fixação Interna de Fraturas/veterinária , Instabilidade Articular/veterinária , Animais , Fenômenos Biomecânicos , Cadáver , Cães , Fixação Interna de Fraturas/instrumentação , Técnicas In Vitro , Instabilidade Articular/cirurgia
8.
Front Cardiovasc Med ; 10: 1248300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692033

RESUMO

Heart failure remains a significant cause of mortality in the United States and around the world. While organ transplantation is acknowledged as the gold standard treatment for end stage heart failure, supply is limited, and many patients are treated with left ventricular assist devices (LVADs). LVADs extend and improve patients' lives, but they are not without their own complications, particularly the hemocompatibility related adverse events (HRAE) including stroke, bleeding and pump thrombosis. Mainstream imaging techniques currently in use to assess appropriate device function and troubleshoot complications, such as echocardiography and cardiac computed tomography, provide some insight but do not provide a holistic understanding of pump induced flow alterations that leads to HRAEs. In contrast, there are technologies restricted to the benchtop-such as computational fluid dynamics and mock circulatory loops paired with methods like particle image velocimetry-that can assess flow metrics but have not been optimized for clinical care. In this review, we outline the potential role and current limitations of converging available technologies to produce novel imaging techniques, and the potential utility in evaluating hemodynamic flow to determine whether LVAD patients may be at higher risk of HRAEs. This addition to diagnostic and monitoring capabilities could improve prevention and treatment of LVAD-induced complications in heart failure patients.

9.
Sci Adv ; 9(5): eade9068, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36724281

RESUMO

Bone fragments embedded in a rib of a mastodon (Mammut americanum) from the Manis site, Washington, were digitally excavated and refit to reconstruct an object that is thin and broad, has smooth, shaped faces that converge to sharp lateral edges, and has a plano-convex cross section. These characteristics are consistent with the object being a human-made projectile point. The 13,900-year-old Manis projectile point is morphologically different from later cylindrical osseous points of the 13,000-year-old Clovis complex. The Manis point, which is made of mastodon bone, shows that people predating Clovis made and used osseous weapons to hunt megafauna in the Pacific Northwest during the Bølling-Allerød.


Assuntos
Mastodontes , Animais , Humanos , Recém-Nascido , Washington , Pangolins , Caça , Arqueologia
10.
Mater Today Bio ; 14: 100240, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35308044

RESUMO

Atrial fibrillation induced stroke accounts for up to 15% of all strokes. These strokes are caused approximately 90% of the time by clot formation in the left atrial appendage (LAA). To prevent these clots, the most common approach is to administer blood thinners. However, contraindications prevent some people from being able to have blood thinners. Devices have been developed to seal the LAA to prevent clot formation in these patients. Current devices, such as the LARIAT® tie off the LAA theoretically preventing blood from entering the LAA. These have had limited clinical success mainly due to failure to completely close the LAA leaving holes and orifices for thrombi to form. To overcome this lack of complete closure, many surgeons use off-label approaches, classically filling the LAA filamentous coils, to cover these holes. Although this usually helps largely cover the holes, placement is challenging, the coils can migrate, the holes are not fully closed as there is space within and around the coils that don't fully mold to the LAA geometry. Furthermore, the coils can develop device related thrombi defeating their purpose. Therefore, these are not fully sufficient to complement the closure techniques in closing the LAA. To address limitation of the closure devices and coil sealing of remaining holes, we developed a thermally responsive hydrogel (Thermogel) that solidifies once injected into the LAA to uniformly and fully close off the LAA thus preventing clot formation and device related thrombi. This Thermogel consists of three portions: 1) a structural component composed of thiolated Pluronic F127 for gel to solid transition following injection, 2) Heparin for anticoagulation, and 3) Dopamine for adhesion to the surrounding endothelium in the turbulent flow encountered in cardiovascular applications. Here we have demonstrated that Thermogel, in conjunction with the LARIAT®, is capable of filling the defects in small and large animals through catheter injection. Thermogel was biocompatible and led to atrophy of the LAA at 5 weeks in a large animal model. Given the advantages of this Thermogel for sealing this defect and ability to be delivered through an endovascular approach, Thermogel presents a viable adjuvant to current occlusion-based treatments for sealing cardiovascular defects.

11.
J Biomech Eng ; 133(10): 101008, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22070333

RESUMO

Mechanical forces are key regulators of cell function with varying loads capable of modulating behaviors such as alignment, migration, phenotype modulation, and others. Historically, cell-stretching experiments have employed mechanically simple environments (e.g., uniform uniaxial or equibiaxial stretches). However, stretch distributions in vivo can be highly non-uniform, particularly in cases of disease or subsequent to interventional treatments. Herein, we present a cell-stretching device capable of subjecting cells to controllable gradients in biaxial stretch via radial deformation of circular elastomeric membranes. By including either a defect or a rigid fixation at the center of the membrane, various gradients are generated. Capabilities of the device were quantified by tracking marked positions of the membrane while applying various loads, and experimental feasibility was assessed by conducting preliminary experiments with 3T3 fibroblasts and 10T1/2 cells subjected to 24 h of cyclic stretch. Quantitative real-time PCR was used to measure changes in mRNA expression of a profile of genes representing the major smooth muscle phenotypes. Genes associated with the contractile state were both upregulated (e.g., calponin) and downregulated (e.g., α-2-actin), and genes associated with the synthetic state were likewise both upregulated (e.g., SKI-like oncogene) and downregulated (e.g., collagen III). In addition, cells aligned with an orientation perpendicular to the maximal stretch direction. We have developed an in vitro cell culture device that can produce non-uniform stretch environments similar to in vivo mechanics. Cells stretched with this device showed alignment and altered mRNA expression indicative of phenotype modulation. Understanding these processes as they relate to in vivo pathologies could enable a more accurately targeted treatment to heal or inhibit disease, either through implantable device design or pharmaceutical approaches.


Assuntos
Fibroblastos/citologia , Expressão Gênica/fisiologia , Exercícios de Alongamento Muscular/métodos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia , Células 3T3 , Animais , Fenômenos Biomecânicos/fisiologia , Membrana Celular/fisiologia , Células Cultivadas , Desenho de Equipamento , Fibroblastos/fisiologia , Mecanotransdução Celular/fisiologia , Camundongos , Estimulação Física/métodos , Estresse Mecânico , Propriedades de Superfície
12.
J Mech Behav Biomed Mater ; 114: 104144, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33153924

RESUMO

Uniaxial testing remains the most common modality of mechanical analysis for biological and other soft materials; however, biaxial testing enables a more comprehensive understanding of these materials' mechanical behavior. In recent years, a number of commercially available biaxial testing systems designed for biological materials have been produced; however, there are common limitations that are often associated with using these systems. For example, the range of allowable sample geometries are relatively constrained, the clamping systems are relatively limited with respect to allowable configurations, the load and displacement ranges are relatively small, and the software and control elements offer relatively limited options. Due to these constraints, there are significant benefits associated with designing custom biaxial testing systems that meet the technical requirements for testing a broad range of materials. Herein we present a design for a biaxial testing system with capabilities that extend beyond those associated with typical commercially available systems. Our design is capable of performing uniaxial tests, traditional biaxial tests, and double lap shear (simple shear) tests, in either a displacement or load control mode. Testing protocols have been developed and proof-of-concept experiments have been performed on commercially available silicone membranes and rat abdominal skin samples.


Assuntos
Parede Abdominal , Animais , Teste de Materiais , Ratos , Software , Estresse Mecânico , Resistência à Tração
13.
MethodsX ; 8: 101541, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754809

RESUMO

Push-out tests are frequently used to evaluate the bone-implant interfacial strength of orthopedic implants, particularly dental and craniomaxillofacial applications. There currently is no standard method for performing push-out tests on calvarial models, leading to a variety of inconsistent approaches. In this study, fixtures and methods were developed to perform push-out tests in accordance with the following design objectives: (i) the system rigidly fixes the explanted calvarial sample, (ii) it minimizes lateral bending, (iii) it positions the defect accurately, and (iv) it permits verification of the coaxial alignment of the defect with the push-out rod. The fixture and method was first validated by completing push-out experiments on 30 explanted murine cranial caps and two explanted leporine cranial caps, all induced with bilateral sub-critical defects (5.0 mm and 8.0 mm nominal diameter for the murine and leporine models, respectively). Defects were treated with an autograft (i.e., excised tissue flap), a shape memory polymer (SMP) scaffold, or a PEEK implant. Additional validation was performed on 24 murine cranial caps induced with a single, unilateral critically-sized defect (8.0 mm nominal diameter) and treated with an autograft or a SMP scaffold.•A novel fixture was developed for performing push-out mechanical tests to characterize the strength of a bone-implant interface in calvarial defect repair.•The fixture uses a 3D printed vertical clamp with mating alignment component to fix the sample in place without inducing lateral bending and verify coaxial alignment of push-out rod with the defect.•The fixture can be scaled to different calvarial defect geometries as validated with 5.0 mm bilateral and 8.0 mm single diameter murine calvarial defect model and 8.0 mm bilateral leporine calvarial defect model.

14.
Cureus ; 13(3): e13895, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33880251

RESUMO

Background A comparative biomechanical analysis of two distal biceps tendon repair techniques was performed: a single suture tension slide technique (TST) and two suture double tension slide (DTS) technique. Methodology Ten matched pairs of fresh frozen human cadaveric elbows (20 elbows) were randomly separated into two cohorts for distal biceps tendon repair. One cohort underwent the TST, and the other underwent the DTS technique. The tendon was preconditioned with cyclic loading from 0° to 90° at 0.5 Hz for 3,600 cycles with a 50 N load. The specimens were then loaded to failure at a rate of 1 mm/s. The difference in the load to failure between the groups was analyzed using the Student's t test. The mode of failure was compared between groups using the chi-square test. All p-values were reported with significance set at p < 0.05. Results Overall, 77.8% of the included matched pairs demonstrated greater load to failure in the DTS group. The mean load to failure in the DTS group was 383.3 ± 149.3 N compared to 275.8 ± 98.1 N in the TST group (p = 0.13). The DTS specimens failed at the tendon (5/9), suture (3/9), and bone (1/9). The TST specimens failed at the tendon (4/9) and suture (5/9) only. There was no significant difference in failure type between groups (p = 0.76). Conclusions DTS demonstrates a similar to greater load to failure compared to TST with a trend towards statistical significance. The redundancy provided by the second suture has an inherent advantage without compromising the biomechanical testing.

15.
Acta Biomater ; 136: 233-242, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34571270

RESUMO

Self-fitting scaffolds prepared from biodegradable poly(ε-caprolactone)-diacrylate (PCL-DA) have been developed for the treatment of craniomaxillofacial (CMF) bone defects. As a thermoresponsive shape memory polymer (SMP), with the mere exposure to warm saline, these porous scaffolds achieve a conformal fit in defects. This behavior was expected to be advantageous to osseointegration and thus bone healing. Herein, for an initial assessment of their regenerative potential, a pilot in vivo study was performed using a rabbit calvarial defect model. Exogenous growth factors and cells were excluded from the scaffolds. Key scaffold material properties were confirmed to be maintained following gamma sterilization. To assess scaffold integration and neotissue infiltration along the defect perimeter, non-critically sized (d = 8 mm) bilateral calvarial defects were created in 12 New Zealand white rabbits. Bone formation was assessed at 4 and 16 weeks using histological analysis and micro-CT, comparing defects treated with an SMP scaffold (d = 9 mm x t = 1 or 2 mm) to untreated defects (i.e. defects able to heal without intervention). To further assess osseointegration, push-out tests were performed at 16 weeks and compared to defects treated with poly(ether ether ketone) (PEEK) discs (d = 8.5 mm x t = 2 mm). The results of this study confirmed that the SMP scaffolds were biocompatible and highly conducive to bone formation and ingrowth at the perimeter. Ultimately, this resulted in similar bone volume and surface area versus untreated defects and superior performance in push-out testing versus defects treated with PEEK discs. STATEMENT OF SIGNIFICANCE: Current treatments of craniomaxillofacial (CMF) bone defects include biologic and synthetic grafts but they are limited in their ability to form good contact with adjacent tissue. A regenerative engineering approach using a biologic-free scaffold able to achieve conformal fitting represents a potential "off-the-shelf" surgical product to heal CMF bone defects. Having not yet been evaluated in vivo, this study provided the preliminary assessment of the bone healing potential of self-fitting PCL scaffolds using a rabbit calvarial defect model. The study was designed to assess scaffold biocompatibility as well as bone formation and ingrowth using histology, micro-CT, and biomechanical push-out tests. The favorable results provide a basis to pursue establishing self-fitting scaffolds as a treatment option for CMF defects.


Assuntos
Materiais Inteligentes , Alicerces Teciduais , Animais , Regeneração Óssea , Osteogênese , Poliésteres , Porosidade , Coelhos , Engenharia Tecidual
16.
J Tissue Eng Regen Med ; 15(7): 634-647, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33880858

RESUMO

Incisional hernia is a common complication of hernia repair despite the development of various synthetic and bio-synthetic repair materials. Poor long-term mechanical strength, leading to high recurrence rates, has limited the use of acellular dermal matrices (ADMs) in ventral hernia repair (VHR). Biologically derived meshes have been an area of increasing interest. Still these materials bring the risk of more aggressive immune response and fibrosis in addition to the mechanical failures suffered by the synthetic materials. Platelet-rich plasma (PRP), a growth-factor-rich autologous blood product, has been shown to improve early neovascularization, tissue deposition, and to decrease the rates of recurrence. Here, we demonstrate that PRP promotes the release of growth factors stromal derived factor (SDF)-1, transforming growth factor-beta, and platelet-derived growth factor in a dose-dependent manner. Additionally, we utilize an aortic ring angiogenesis assay to show that PRP promotes angiogenesis in vitro. A rat model of VHR using StratticeTM ADM demonstrates similar findings in vivo, corresponding with the increased expression of vascular endothelial growth factor and collagen type 1 alpha 1. Finally, we show that the molecular and cellular activity initiated by PRP results in an increased mechanical stiffness of the hernia repair mesh over time. Collectively, these data represent an essential step in demonstrating the utility and the mechanism of platelet-derived plasma in biomaterial-aided wound healing and provide promising preclinical data that suggest such materials may improve surgical outcomes.


Assuntos
Hérnia Ventral/cirurgia , Herniorrafia , Plasma Rico em Plaquetas/química , Animais , Fenômenos Biomecânicos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Derme/efeitos dos fármacos , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Ratos Endogâmicos Lew , Suínos , Cicatrização/efeitos dos fármacos
17.
J Tissue Eng Regen Med ; 15(1): 3-13, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197147

RESUMO

The recurrence of ventral hernias continues to be a problem faced by surgeons, in spite of efforts toward implementing novel repair techniques and utilizing different materials to promote healing. Cadaveric acellular dermal matrices (Alloderm) have shown some promise in numerous surgical subspecialties, but these meshes still suffer from subsequent failure and necessitation of re-intervention. Here, it is demonstrated that the addition of platelet rich plasma to Alloderm meshes temporally modulates both the innate and cytotoxic inflammatory responses to the implanted material. This results in decreased inflammatory cytokine production at early time points, decreased matrix metalloproteinase expression, and decreased CD8+ T cell infiltration. Collectively, these immune effects result in a healing phenotype that is free from mesh thinning and characterized by increased material stiffness.


Assuntos
Derme Acelular , Materiais Biocompatíveis , Colágeno , Plasma Rico em Plaquetas , Ratos Endogâmicos Lew , Telas Cirúrgicas , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Colágeno/química , Colágeno/imunologia , Hérnia Ventral/imunologia , Hérnia Ventral/cirurgia , Masculino , Plasma Rico em Plaquetas/química , Plasma Rico em Plaquetas/imunologia , Ratos
18.
J Mech Behav Biomed Mater ; 102: 103509, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31877517

RESUMO

It is common practice to evaluate the mechanical performance of a scaffold for tissue engineering using concepts from linear elasticity theory (i.e. Young's modulus), or variations thereof, and uniaxial testing data. In some cases the non-linear nature of tissue stress-strain behavior has prompted development of empirical approaches to obtain a more comprehensive description of the observed mechanical behavior. Such approaches constitute improvements over singular stiffness measures but the lack of an appropriate non-linear theoretical foundation renders them somewhat arbitrary and potentially incomplete. Recently, a constitutive model for non-linear tissues was developed based on first principles in physics. The Freed-Rajagopal 1-D Fiber Model incorporates physically meaningful parameters that provide a unique and comprehensive characterization of non-linear tissue behavior for the class of tissues with strain limiting behavior in 1D. The physical interpretation that these parameters provide suggests they may serve as useful design targets for tissue engineering applications. In this study, the Freed-Rajagopal model is employed with conventional uniaxial mechanical testing data obtained from experiments with collagen scaffolds for hernia repair grafts and the healthy native tissue counterpart. Results from the Freed-Rajagopal analysis revealed that tissue-engineered constructs that qualify as "biomimetic" according to linear elasticity theory, or variations thereof, are not truly biomimetic, as they do not mimic the non-linear mechanical behaviors observed in their native tissue counterparts. Most importantly, the Freed-Rajagopal model was easy to employ (it can be done using a standard uniaxial testing system, with minimal additional effort) and revealed specific design improvements that could be targeted to improve the biofidelity of these constructs. A performance comparison with conventional non-linear models (including Fung's 1D Law and a one-dimensionalized version of the Holzapfel, Gasser, Ogden model), was then conducted and revealed the Freed-Rajagopal model produced results that correlated exceptionally well with experimental data and better describes material behavior at low strains as compared to competing models.


Assuntos
Biomimética , Engenharia Tecidual , Colágeno , Módulo de Elasticidade , Elasticidade , Estresse Mecânico
19.
MethodsX ; 7: 101049, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944515

RESUMO

Repeated endoscopic access to the abdominal cavity of animal models is useful for a variety of research applications. However, repeated surgical access may affect the welfare of the animal and compromise results. We present the design and benchtop manufacturing process for a self-sealing endoscopic port requiring surgical incision only at implantation. It can be used for repeated body cavity access over a long time period. This device reduces costs, animals required for a given study, and potential suffering for each animal. This novel endoscopic port is designed for low-cost benchtop manufacturing without expensive equipment such as injection molding facilities. Devices manufactured using the method described in this work have been implanted successfully in hen models for investigation of ovarian cancer for over two years. All work followed Texas A&M University institutional guidelines and was covered under Animal Use Protocol 2017-0172, approved by TAMU Animal Care and Use Committee (IACUC). This method can be translated to produce similar devices for use in other small animal models besides the galline model used in this work. This method can be used to produce devices for slightly different purposes than repeated endoscopic access, such as production of an entry port for surgical tools.

20.
Sports Med Health Sci ; 2(3): 159-165, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35782287

RESUMO

We tested a PEEP (4.2 cmH2O) mouthpiece (PMP) on maximal cycling performance in healthy adults. Experiment-1, PMP vs. non-PMP mouthpiece (CON) [n  = 9 (5♂), Age = 30 ±â€¯2 yr]; Experiment-2, PMP vs. no mouthpiece (NMP) [n = 10 (7♂), Age = 27 ±â€¯1 yr]. At timepoint 1 in both experiments (mouthpiece condition randomized) subjects performed graded cycling testing (GXT) (Corival® cycle ergometer) to determine V ˙ O2peak (ml∗kg∗min -1), O2pulse (mlO2∗bt -1), GXT endurance time (GXT-T(s)), and V ˙ O2(ml∗kg∗min -1)-at-ventilatory-threshold ( V ˙ O2 @VT). At timepoint 2 72 h later, subjects completed a ventilatory-threshold-endurance-ride [VTER(s)] timed to exhaustion at V ˙ O2 @VT power (W). One week later at timepoints 3 and 4 (time-of-day controlled), subjects repeated testing protocols under the alternate mouthpiece condition. Selected results (paired T-test, p<0.05): Experiment 1 PMP vs. CON, respectively: V ˙ O2peak â€‹= â€‹45.2 â€‹± â€‹2.4 vs. 42.4 â€‹± â€‹2.3 p<0.05; V ˙ O2@VT â€‹= â€‹33.7 â€‹± â€‹2.0 vs. 32.3 â€‹± â€‹1.6; GXT-TTE â€‹= â€‹521.7 â€‹± â€‹73.4 vs. 495.3 â€‹± â€‹72.8 (p<0.05); VTER â€‹= â€‹846.2 â€‹± â€‹166.0 vs. 743.1 â€‹± â€‹124.7; O2pulse â€‹= â€‹24.5 â€‹± â€‹1.4 vs. 23.1 â€‹± â€‹1.3 (p<0.05). Experiment 2 PMP vs. NMP, respectively: V ˙ O2peak â€‹= â€‹43.3 â€‹± â€‹1.6 vs. 41.7 â€‹± â€‹1.6 (p<0.05); V ˙ O2@VT â€‹= â€‹31.1 â€‹± â€‹1.2 vs. 29.1 â€‹± â€‹1.3 (p<0.05); GXT-TTE â€‹= â€‹511.7 â€‹± â€‹49.6 vs. 486.4 â€‹± â€‹49.6 (p<0.05); VTER 872.4 â€‹± â€‹134.0 vs. 792.9 â€‹± â€‹122.4; O2pulse â€‹= â€‹24.1 â€‹± â€‹0.9 vs. 23.4 â€‹± â€‹0.9 (p<0.05). Results demonstrate that the PMP conferred a significant performance benefit to cyclists completing high intensity cycling exercise.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa