RESUMO
Aminopenicillins have been widely used for decades for the treatment of various infections in animals and humans in European countries. Following this extensive use, acquired resistance has emerged among human and animal pathogens and commensal bacteria. Aminopenicillins are important first-line treatment options in both humans and animals, but are also among limited therapies for infections with enterococci and Listeria spp. in humans in some settings. Therefore, there is a need to assess the impact of the use of these antimicrobials in animals on public and animal health. The most important mechanisms of resistance to aminopenicillins are the ß-lactamase enzymes. Similar resistance genes have been detected in bacteria of human and animal origin, and molecular studies suggest that transmission of resistant bacteria or resistance genes occurs between animals and humans. Due to the complexity of epidemiology and the near ubiquity of many aminopenicillin resistance determinants, the direction of transfer is difficult to ascertain, except for major zoonotic pathogens. It is therefore challenging to estimate to what extent the use of aminopenicillins in animals could create negative health consequences to humans at the population level. Based on the extent of use of aminopenicillins in humans, it seems probable that the major resistance selection pressure in human pathogens in European countries is due to human consumption. It is evident that veterinary use of these antimicrobials increases the selection pressure towards resistance in animals and loss of efficacy will at minimum jeopardize animal health and welfare.
Assuntos
Anti-Infecciosos , Bactérias , Animais , Humanos , Penicilinas , beta-Lactamases , Europa (Continente)/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêuticoRESUMO
BACKGROUND: Swine are considered a major source of foodborne salmonellosis, a public health issue further complicated by the circulation of multidrug-resistant Salmonella strains that threaten the safety of the food chain. The current study aimed to identify patterns that can help to understand the epidemiology of antimicrobial resistance (AMR) in Salmonella in pigs in Spain through the application of several multivariate statistical methods to data from the AMR national surveillance programs from 2001 to 2017. RESULTS: A total of 1,318 pig Salmonella isolates belonging to 63 different serotypes were isolated and their AMR profiles were determined. Tetracycline resistance across provinces in Spain was the highest among all antimicrobials and ranged from 66.7% to 95.8%, followed by sulfamethoxazole resistance (range: 42.5% - 77.8%), streptomycin resistance (range: 45.7% - 76.7%), ampicillin resistance (range: 24.3% - 66.7%, with a lower percentage of resistance in the South-East of Spain), and chloramphenicol resistance (range: 8.5% - 41.1%). A significant increase in the percentage of resistant isolates to chloramphenicol, sulfamethoxazole, ampicillin and trimethoprim from 2013 to 2017 was observed. Bayesian network analysis showed the existence of dependencies between resistance to antimicrobials of the same but also different families, with chloramphenicol and sulfamethoxazole in the centre of the networks. In the networks, the conditional probability for an isolate susceptible to ciprofloxacin that was also susceptible to nalidixic acid was 0.999 but for an isolate resistant to ciprofloxacin that was also resistant to nalidixic acid was only 0.779. An isolate susceptible to florfenicol would be expected to be susceptible to chloramphenicol, whereas an isolate resistant to chloramphenicol had a conditional probability of being resistant to florfenicol at only 0.221. Hierarchical clustering further demonstrated the linkage between certain resistances (and serotypes). For example, a higher likelihood of multidrug-resistance in isolates belonging to 1,4,[5],12:i:- serotype was found, and in the cluster where all isolates were resistant to tetracycline, chloramphenicol and florfenicol, 86.9% (n = 53) of the isolates were Typhimurium. CONCLUSION: Our study demonstrated the power of multivariate statistical methods in discovering trends and patterns of AMR and found the existence of serotype-specific AMR patterns for serotypes of public health concern in Salmonella isolates in pigs in Spain.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Animais , Antibacterianos/farmacologia , Teorema de Bayes , Cloranfenicol , Ciprofloxacina , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana/veterinária , Ácido Nalidíxico , Salmonella , Espanha/epidemiologia , Sulfametoxazol , SuínosRESUMO
Aminoglycosides (AGs) are important antibacterial agents for the treatment of various infections in humans and animals. Following extensive use of AGs in humans, food-producing animals and companion animals, acquired resistance among human and animal pathogens and commensal bacteria has emerged. Acquired resistance occurs through several mechanisms, but enzymatic inactivation of AGs is the most common one. Resistance genes are often located on mobile genetic elements, facilitating their spread between different bacterial species and between animals and humans. AG resistance has been found in many different bacterial species, including those with zoonotic potential such as Salmonella spp., Campylobacter spp. and livestock-associated MRSA. The highest risk is anticipated from transfer of resistant enterococci or coliforms (Escherichia coli) since infections with these pathogens in humans would potentially be treated with AGs. There is evidence that the use of AGs in human and veterinary medicine is associated with the increased prevalence of resistance. The same resistance genes have been found in isolates from humans and animals. Evaluation of risk factors indicates that the probability of transmission of AG resistance from animals to humans through transfer of zoonotic or commensal foodborne bacteria and/or their mobile genetic elements can be regarded as high, although there are no quantitative data on the actual contribution of animals to AG resistance in human pathogens. Responsible use of AGs is of great importance in order to safeguard their clinical efficacy for human and veterinary medicine.
Assuntos
Aminoglicosídeos/uso terapêutico , Antibacterianos/uso terapêutico , Gestão de Antimicrobianos , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana , Aminoglicosídeos/farmacologia , Animais , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Saúde , Humanos , Gado , Salmonella/efeitos dos fármacos , ZoonosesRESUMO
Antimicrobials are important tools for the therapy of infectious bacterial diseases in companion animals. Loss of efficacy of antimicrobial substances can seriously compromise animal health and welfare. A need for the development of new antimicrobials for the therapy of multiresistant infections, particularly those caused by Gram-negative bacteria, has been acknowledged in human medicine and a future corresponding need in veterinary medicine is expected. A unique aspect related to antimicrobial resistance and risk of resistance transfer in companion animals is their close contact with humans. This creates opportunities for interspecies transmission of resistant bacteria. Yet, the current knowledge of this field is limited and no risk assessment is performed when approving new veterinary antimicrobials. The objective of this review is to summarize the current knowledge on the use and indications for antimicrobials in companion animals, drug-resistant bacteria of concern among companion animals, risk factors for colonization of companion animals with resistant bacteria and transmission of antimicrobial resistance (bacteria and/or resistance determinants) between animals and humans. The major antimicrobial resistance microbiological hazards originating from companion animals that directly or indirectly may cause adverse health effects in humans are MRSA, methicillin-resistant Staphylococcus pseudintermedius, VRE, ESBL- or carbapenemase-producing Enterobacteriaceae and Gram-negative bacteria. In the face of the previously recognized microbiological hazards, a risk assessment tool could be applied in applications for marketing authorization for medicinal products for companion animals. This would allow the approval of new veterinary medicinal antimicrobials for which risk levels are estimated as acceptable for public health.
Assuntos
Bactérias/efeitos dos fármacos , Infecções Bacterianas/veterinária , Transmissão de Doença Infecciosa , Farmacorresistência Bacteriana , Animais de Estimação , Zoonoses/microbiologia , Zoonoses/transmissão , Animais , Infecções Bacterianas/microbiologia , Infecções Bacterianas/transmissão , Humanos , Medição de RiscoRESUMO
The acquisition, processing, and interpretation of thermal images from unmanned aerial vehicles (UAVs) is becoming a useful source of information for agronomic applications because of the higher temporal and spatial resolution of these products compared with those obtained from satellites. However, due to the low load capacity of the UAV they need to mount light, uncooled thermal cameras, where the microbolometer is not stabilized to a constant temperature. This makes the camera precision low for many applications. Additionally, the low contrast of the thermal images makes the photogrammetry process inaccurate, which result in large errors in the generation of orthoimages. In this research, we propose the use of new calibration algorithms, based on neural networks, which consider the sensor temperature and the digital response of the microbolometer as input data. In addition, we evaluate the use of the Wallis filter for improving the quality of the photogrammetry process using structure from motion software. With the proposed calibration algorithm, the measurement accuracy increased from 3.55 °C with the original camera configuration to 1.37 °C. The implementation of the Wallis filter increases the number of tie-point from 58,000 to 110,000 and decreases the total positing error from 7.1 m to 1.3 m.
RESUMO
The aim of this study was to evaluate if the treatments with ceftiofur and amoxicillin are risk factors for the emergence of cephalosporin resistant (CR) E. coli in a pig farm during the rearing period. One hundred 7-day-old piglets were divided into two groups, a control (n = 50) group and a group parenterally treated with ceftiofur (n = 50). During the fattening period, both groups were subdivided in two. A second treatment with amoxicillin was administered in feed to two of the four groups, as follows: group 1 (untreated, n = 20), group 2 (treated with amoxicillin, n = 26), group 3 (treated with ceftiofur, n = 20), and group 4 (treated with ceftiofur and amoxicillin, n = 26). During treatment with ceftiofur, fecal samples were collected before treatment (day 0) and at days 2, 7, 14, 21, and 42 posttreatment, whereas with amoxicillin, the sampling was extended 73 days posttreatment. CR E. coli bacteria were selected on MacConkey agar with ceftriaxone (1 mg/liter). Pulsed-field gel electrophoresis (PFGE), MICs of 14 antimicrobials, the presence of cephalosporin resistance genes, and replicon typing of plasmids were analyzed. Both treatments generated an increase in the prevalence of CR E. coli, which was statistically significant in the treated groups. Resistance diminished after treatment. A total of 47 CR E. coli isolates were recovered during the study period; of these, 15 contained blaCTX-M-1, 10 contained blaCTX-M-14, 4 contained blaCTX-M-9, 2 contained blaCTX-M-15, and 5 contained blaSHV-12. The treatment with ceftiofur and amoxicillin was associated with the emergence of CR E. coli during the course of the treatment. However, by the time of finishing, CR E. coli bacteria were not recovered from the animals.
Assuntos
Criação de Animais Domésticos/métodos , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Uso de Medicamentos , Infecções por Escherichia coli/microbiologia , Escherichia coli/efeitos dos fármacos , Resistência beta-Lactâmica , Amoxicilina/administração & dosagem , Amoxicilina/farmacologia , Animais , Antibacterianos/administração & dosagem , Cefalosporinas/administração & dosagem , Eletroforese em Gel de Campo Pulsado , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Genótipo , Testes de Sensibilidade Microbiana , Tipagem Molecular , Plasmídeos/análise , SuínosRESUMO
Translational accuracy depends on the correct formation of aminoacyl-tRNAs, which, in the majority of cases, are produced by specific aminoacyl-tRNA synthetases that ligate each amino acid to its cognate isoaceptor tRNA. Aminoacylation of tRNAGln, however, is performed by various mechanisms in different systems. Since no mitochondrial glutaminyl-tRNA synthetase has been identified to date in mammalian mitochondria, Gln-tRNAGln has to be formed by an indirect mechanism in the organelle. It has been demonstrated that human mitochondria contain a non-discriminating glutamyl-tRNA synthetase and the heterotrimeric enzyme GatCAB (where Gat is glutamyl-tRNAGln amidotransferase), which are able to catalyse the formation of Gln-tRNAGln in vitro. In the present paper we demonstrate that mgatA (mouse GatA) interference in mouse cells produces a strong defect in mitochondrial translation without affecting the stability of the newly synthesized proteins. As a result, interfered cells present an impairment of the oxidative phosphorylation system and a significant increase in ROS (reactive oxygen species) levels. MS analysis of mitochondrial proteins revealed no glutamic acid found in the position of glutamines, strongly suggesting that misaminoacylated Glu-tRNAGln is rejected from the translational apparatus to maintain the fidelity of mitochondrial protein synthesis in mammals.
Assuntos
Mitocôndrias/enzimologia , Mitocôndrias/genética , Transferases de Grupos Nitrogenados/genética , Transferases de Grupos Nitrogenados/metabolismo , Biossíntese de Proteínas/fisiologia , Animais , Células HEK293 , Células HeLa , Humanos , Camundongos , Fosforilação Oxidativa , Fenótipo , Estabilidade Proteica , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em TandemRESUMO
Cytochrome c oxidase (COX) or complex IV of the mitochondrial respiratory chain plays a fundamental role in energy production of aerobic cells. In humans, COX deficiency is the most frequent cause of mitochondrial encephalomyopathies. Human COX is composed of 13 subunits of dual genetic origin, whose assembly requires an increasing number of nuclear-encoded accessory proteins known as assembly factors. Here, we have identified and characterized human CCDC56, an 11.7-kDa mitochondrial transmembrane protein, as a new factor essential for COX biogenesis. CCDC56 shares sequence similarity with the yeast COX assembly factor Coa3 and was termed hCOA3. hCOA3-silenced cells display a severe COX functional alteration owing to a decreased stability of newly synthesized COX1 and an impairment in the holoenzyme assembly process. We show that hCOA3 physically interacts with both the mitochondrial translation machinery and COX structural subunits. We conclude that hCOA3 stabilizes COX1 co-translationally and promotes its assembly with COX partner subunits. Finally, our results identify hCOA3 as a new candidate when screening for genes responsible for mitochondrial diseases associated with COX deficiency.
Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Multimerização Proteica , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , Estabilidade Enzimática , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteínas de Membrana/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Ligação Proteica , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia , Proteólise , RNA Interferente Pequeno/genéticaRESUMO
DREF [DRE (DNA replication-related element)-binding factor] controls the transcription of numerous genes in Drosophila, many involved in nuclear DNA (nDNA) replication and cell proliferation, three in mitochondrial DNA (mtDNA) replication and two in mtDNA transcription termination. In this work, we have analysed the involvement of DREF in the expression of the known remaining genes engaged in the minimal mtDNA replication (d-mtDNA helicase) and transcription (the activator d-mtTFB2) machineries and of a gene involved in mitochondrial mRNA translation (d-mtTFB1). We have identified their transcriptional initiation sites and DRE sequences in their promoter regions. Gel-shift and chromatin immunoprecipitation assays demonstrate that DREF interacts in vitro and in vivo with the d-mtDNA helicase and d-mtTFB2, but not with the d-mtTFB1 promoters. Transient transfection assays in Drosophila S2 cells with mutated DRE motifs and truncated promoter regions show that DREF controls the transcription of d-mtDNA helicase and d-mtTFB2, but not that of d-mtTFB1. RNA interference of DREF in S2 cells reinforces these results showing a decrease in the mRNA levels of d-mtDNA helicase and d-mtTFB2 and no changes in those of the d-mtTFB1. These results link the genetic regulation of nuclear DNA replication with the genetic control of mtDNA replication and transcriptional activation in Drosophila.
Assuntos
DNA Helicases/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Fatores de Transcrição/genética , Animais , Western Blotting , Núcleo Celular , Imunoprecipitação da Cromatina , DNA Helicases/metabolismo , Proteínas de Drosophila/genética , Ensaio de Desvio de Mobilidade Eletroforética , Luciferases , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Sítio de Iniciação de TranscriçãoRESUMO
Pleuromutilins (tiamulin and valnemulin) are antimicrobial agents that are used mainly in veterinary medicine, especially for swine and to a lesser extent for poultry and rabbits. In pigs, tiamulin and valnemulin are used to treat swine dysentery, spirochaete-associated diarrhoea, porcine proliferative enteropathy, enzootic pneumonia and other infections where Mycoplasma is involved. There are concerns about the reported increases in the MICs of tiamulin and valnemulin for porcine Brachyspira hyodysenteriae isolates from different European countries, as only a limited number of antimicrobials are available for the treatment of swine dysentery where resistance to these antimicrobials is already common and widespread. The loss of pleuromutilins as effective tools to treat swine dysentery because of further increases in resistance or as a consequence of restrictions would present a considerable threat to pig health, welfare and productivity. In humans, only one product containing pleuromutilins (retapamulin) is authorized currently for topical use; however, products for oral and intravenous administration to humans with serious multidrug-resistant skin infections and respiratory infections, including those caused by methicillin-resistant Staphylococcus aureus (MRSA), are being developed. The objective of this review is to summarize the current knowledge on the usage of pleuromutilins, resistance development and the potential impact of this resistance on animal and human health.
Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Doenças das Aves Domésticas/tratamento farmacológico , Doenças dos Suínos/tratamento farmacológico , Animais , Brachyspira hyodysenteriae/efeitos dos fármacos , Diterpenos/efeitos adversos , Diterpenos/farmacologia , União Europeia , Humanos , Testes de Sensibilidade Microbiana , Infecções por Mycoplasma/tratamento farmacológico , Compostos Policíclicos , Aves Domésticas , Coelhos , Suínos , PleuromutilinasRESUMO
The objective of this study was to determine the dynamics and diversity of Escherichia coli populations in animal and environmental lines of a commercial farrow-to-finish pig farm in Spain along a full production cycle (July 2008 to July 2009), with special attention to antimicrobial resistance and the presence of integrons. In the animal line, a total of 256 isolates were collected from pregnant sows (10 samples and 20 isolates), 1-week-old piglets (20 samples and 40 isolates), unweaned piglets (20 samples and 38 isolates), growers (20 samples and 40 isolates), and the finishers' floor pen (6 samples and 118 isolates); from the underfloor pits and farm slurry tank environmental lines, 100 and 119 isolates, respectively, were collected. Our results showed that E. coli populations in the pig fecal microbiota and in the farm environment are highly dynamic and show high levels of diversity. These issues have been proven through DNA-based typing data (repetitive extragenic palindromic PCR [REP-PCR]) and phenotypic typing data (antimicrobial resistance profile comprising 19 antimicrobials). Clustering of the sampling groups based on their REP-PCR typing results showed that the spatial features (the line) had a stronger weight than the temporal features (sampling week) for the clustering of E. coli populations; this weight was less significant when clustering was performed based on resistotypes. Among animals, finishers harbored an E. coli population different from those of the remaining animal populations studied, considering REP-PCR fingerprints and resistotypes. This population, the most important from a public health perspective, demonstrated the lowest levels of antimicrobial resistance and integron presence.
Assuntos
Carga Bacteriana , Farmacorresistência Bacteriana , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Variação Genética , Esterco/microbiologia , Suínos/microbiologia , Animais , Análise por Conglomerados , DNA Bacteriano/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Integrons , Testes de Sensibilidade Microbiana , Tipagem Molecular , EspanhaRESUMO
Reading a word may involve the spoken language in two ways: in the conversion of letters to phonemes according to the conventions of the language's writing system and the assimilation of phonemes according to the language's constraints on speaking. If so, then words that require assimilation when uttered would require a change in the phonemes produced by grapheme-phoneme conversion when read. In two experiments, each involving 40 fluent readers, we compared visual lexical decision on Korean orthographic forms that would require such a change (C stimuli) or not (NC stimuli). We found that NC words were accepted faster than C words, and C nonwords were rejected faster than NC nonwords. The results suggest that phoneme-to-phoneme transformations involved in uttering a word may also be involved in visually identifying the word.
Assuntos
Tomada de Decisões/fisiologia , Idioma , Reconhecimento Visual de Modelos/fisiologia , Leitura , Fala/fisiologia , Adulto , Humanos , Estimulação Luminosa , Tempo de Reação/fisiologiaRESUMO
In recent years, the central role of cell bioenergetics in regulating immune cell function and fate has been recognized, giving rise to the interest in immunometabolism, an area of research focused on the interaction between metabolic regulation and immune function. Thus, early metabolic changes associated with the polarization of macrophages into pro-inflammatory or pro-resolving cells under different stimuli have been characterized. Tumor-associated macrophages are among the most abundant cells in the tumor microenvironment; however, it exists an unmet need to study the effect of chemotherapeutics on macrophage immunometabolism. Here, we use a systems biology approach that integrates transcriptomics and metabolomics to unveil the immunometabolic effects of trabectedin (TRB) and lurbinectedin (LUR), two DNA-binding agents with proven antitumor activity. Our results show that TRB and LUR activate human macrophages toward a pro-inflammatory phenotype by inducing a specific metabolic rewiring program that includes ROS production, changes in the mitochondrial inner membrane potential, increased pentose phosphate pathway, lactate release, tricarboxylic acids (TCA) cycle, serine and methylglyoxal pathways in human macrophages. Glutamine, aspartate, histidine, and proline intracellular levels are also decreased, whereas oxygen consumption is reduced. The observed immunometabolic changes explain additional antitumor activities of these compounds and open new avenues to design therapeutic interventions that specifically target the immunometabolic landscape in the treatment of cancer.
Assuntos
Neoplasias , Humanos , Trabectedina/farmacologia , Macrófagos , Ácido Láctico , Microambiente TumoralRESUMO
Resistance to third- and fourth-generation cephalosporins in Escherichia coli is mainly due to extended-spectrum beta-lactamases (ESBL) and AmpC cephalosporinases, which have been increasingly reported, mainly in isolates from humans and poultry. The aim of this study was to address the flow of antimicrobial resistance determinants in the full laying hen production cycle (four batches followed from day-old chicks to 83/84-week-old layers), using cephalosporin-resistant E. coli as a model and their characterization using whole genome sequencing (WGS). Fifteen out of 22 samples analysed yielded growth on MacConkey agar with cefotaxime (1 mg/L). Of these, 141 isolates were identified as E. coli and 47 were characterized by WGS. Genes detected were three ESBL (blaCTX-M-1 (n = 19); blaCTX-M-14 (n = 1); and blaSHV-12 (n = 9)) and one AmpC (blaCMY-2 (n = 13)). Some isolates only harboured blaTEM-1B (n = 2) or blaTEM-1D (n = 1). IncI1 plasmids were the main platform for ESBL/AmpC genes. In addition, five clones were identified harbouring blaCTX-M-1 (two), blaSHV-12 (one) and blaCMY-2 (two), drawing a clone-plasmid mixed flow model. Gene blaCTX-M-1 was found in the chromosomal DNA of clone 1 over 14 months, and in IncI1/ST3 plasmids over six months; over six months blaSHV-12 was found harboured by clone 3 (IncI1/ST26 plasmids), and 15 months later in a non-replicon detected plasmid. Finally, blaCMY-2 spread for at least 16 months, mainly by IncK2 (including clone 4) and IncI1/ST12 (clone 5) plasmids. Proper use of antimicrobials should be combined with other farm management strategies for the effective control of cephalosporin-resistant E. coli isolates in commercial layer farms.
Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Galinhas/genética , Escherichia coli/genética , Infecções por Escherichia coli/veterinária , Fazendas , Feminino , Plasmídeos/genética , beta-Lactamases/genéticaRESUMO
BACKGROUND: Resistance to colistin was an uncommon phenomenon traditionally linked to chromosome point mutations, but since the first description of a plasmid-mediated colistin-resistance in late 2015, transmissible resistance to colistin has become a Public Health concern. Despite colistin is considered as a human last resort antibiotic, it has been commonly used in swine industry to treat post-weaning diarrhoea in piglets. However, the progressively increase of colistin resistance during the last decade led to the Spanish Medicines and Healthcare Products Agency (AEMPS) to launch a strategic and voluntary plan aimed to reduce colistin consumption in pig production. Our longitudinal study (1998-2021) aimed to evaluate the trend of colistin resistance mediated through the mcr-1 mobile gene in Spanish food-producing pig population and compare it with published polymyxin sales data in veterinary medicine to assess their possible relationships. RESULTS: The first mcr-1 positive sample was observed in 2004, as all samples from 1998 and 2002 were mcr-1 PCR-negative. We observed a progressive increase of positive samples from 2004 to 2015, when mcr-1 detection reached its maximum peak (33/50; 66%). From 2017 (27/50; 54%) to 2021 (14/81; 17%) the trend became downward, reaching percentages significantly lower than the 2015 peak (p < 0.001). The abundance of mcr-1 gene in PCR-positive samples showed a similar trend reaching the highest levels in 2015 (median: 6.6 × 104 mcr-1 copies/mg of faeces), but decreased significantly from 2017 to 2019 (median 2.7 × 104, 1.2 × 103, 4.6 × 102 mcr-1 copies/mg of faeces for 2017, 2018 and 2019, respectively), and stabilizing in 2021 (1.6 × 102 mcr-1 copies/mg of faeces) with similar values than 2019. CONCLUSIONS: Our study showed the decreasing trend of colistin resistance associated to mcr-1 gene, after a previous increase from among 2004-2015, since the European Medicines Agency and AEMPS strategies were applied in 2016 to reduce colistin use in animals, suggesting a connection between polymyxin use and colistin resistance. Thus, these plans could have been effective in mcr-1 reduction, reaching lower levels than those detected in samples collected 17 years ago, when resistance to colistin was not yet a major concern.
RESUMO
Staphylococcus pseudintermedius is an important opportunistic pathogen of companion animals, especially dogs. Since 2006 there has been a significant emergence of methicillin-resistant S. pseudintermedius (MRSP) mainly due to clonal spread. This article reviews research on MRSP with a focus on occurrence, methods used for identification, risk factors for colonization and infection, zoonotic potential and control options. Potential areas for future research are also discussed.
Assuntos
Doenças do Cão/epidemiologia , Doenças do Cão/microbiologia , Resistência a Meticilina , Infecções Estafilocócicas/veterinária , Staphylococcus/efeitos dos fármacos , Staphylococcus/patogenicidade , Animais , Antibacterianos/farmacologia , Doenças do Gato/epidemiologia , Doenças do Gato/microbiologia , Gatos , Cães , Humanos , Meticilina/farmacologia , Animais de Estimação , Prevalência , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus/genética , Staphylococcus/isolamento & purificação , Zoonoses/epidemiologia , Zoonoses/microbiologiaRESUMO
Do speakers know universal restrictions on linguistic elements that are absent from their language? We report an experimental test of this question. Our case study concerns the universal restrictions on initial consonant sequences, onset clusters (e.g., bl in block). Across languages, certain onset clusters (e.g., lb) are dispreferred (e.g., systematically under-represented) relative to others (e.g., bl). We demonstrate such preferences among Korean speakers, whose language lacks initial C(1)C(2) clusters altogether. Our demonstration exploits speakers' well known tendency to misperceive ill-formed clusters. We show that universally dispreferred onset clusters are more frequently misperceived than universally preferred ones, indicating that Korean speakers consider the former cluster-type more ill-formed. The misperception of universally ill-formed clusters is unlikely to be due to a simple auditory failure. Likewise, the aversion of universally dispreferred onsets by Korean speakers is not explained by English proficiency or by several phonetic and phonological properties of Korean. We conclude that language universals are neither relics of language change nor are they artifacts of generic limitations on auditory perception and motor control-they reflect universal linguistic knowledge, active in speakers' brains.
Assuntos
Encéfalo , Idioma , Percepção Auditiva , Humanos , Coreia (Geográfico) , Fonética , Testes de Articulação da FalaRESUMO
Colistin has a long story of safe use in animals for the treatment and prevention of certain bacterial diseases. Nevertheless, the first description of the mcr-1 gene showed that colistin resistance can spread by horizontal gene transfer and changed the landscape. This study aimed to assess the effect of colistin administration on the dispersion of resistance in the microbiota of day-old broiler chicks and how the presence of mcr-1 genes influences the spread of colistin resistance determinants. In this study, 100 one-day-old chicks were divided into four groups of 25 animals (G1, G2, G3, and G4). Animals from G3/G4 were challenged with mcr-1-carrying Salmonella (day 7), while colistin (600 mg/L) was administered daily to G2/G4 animals through drinking water (from day 8 to day 15). Two quantitative PCR assays were performed to compare the amount of Salmonella and mcr-1 that were present in the caecal samples. We observed that levels of mcr-1 were higher in G3/G4 animals, especially G4, due to the spread of mcr-1-carrying Salmonella. On day 21, Salmonella levels decreased in G4, reaching similar values as those for G3, but mcr-1 levels remained significantly higher, suggesting that colistin may accelerate the spreading process when mcr-1-carrying bacteria reach the gut.
RESUMO
Risk factors and outcomes of GF after TCD haploidentical transplantation in children with hematological malignancies were analyzed. 148 TCD transplants were included. 78 patients were diagnosed of ALL and 70 patients of AML. 22 out of 148 patients developed GF. MVA showed that patient <9 years (HR: 5.0; 95% CI: 1.1-23.0; p = 0.03) and pre-transplant CD8+ ≥150/µL (HR: 12.0; 95% CI: 1.6-95.3; p = 0.01) were associated with GF. A score was assigned to each patient. The cumulative incidence of GF for patients with CD8+ ≥150/µL (2 points) was 6 ± 4% and 3 ± 2% for patients <9 years (1 point) while for patients with 3 points was 24 ± 6%, With a median follow-up of 48 months (range; 4-180 months), 14 (64%) of 22 patients with GF are alive and disease-free. DFS for GF patients was 53 ± 12%. In conclusion, patient age and pre-transplant CD3+/CD8+ are associated with GF in children undergoing TCD haploidentical transplantation.