Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Ther ; 31(3): 825-846, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638800

RESUMO

Blindness caused by advanced stages of inherited retinal diseases and age-related macular degeneration are characterized by photoreceptor loss. Cell therapy involving replacement with functional photoreceptor-like cells generated from human pluripotent stem cells holds great promise. Here, we generated a human recombinant retina-specific laminin isoform, LN523, and demonstrated the role in promoting the differentiation of human embryonic stem cells into photoreceptor progenitors. This chemically defined and xenogen-free method enables reproducible production of photoreceptor progenitors within 32 days. We observed that the transplantation into rd10 mice were able to protect the host photoreceptor outer nuclear layer (ONL) up to 2 weeks post transplantation as measured by full-field electroretinogram. At 4 weeks post transplantation, the engrafted cells were found to survive, mature, and associate with the host's rod bipolar cells. Visual behavioral assessment using the water maze swimming test demonstrated visual improvement in the cell-transplanted rodents. At 20 weeks post transplantation, the maturing engrafted cells were able to replace the loss of host ONL by extensive association with host bipolar cells and synapses. Post-transplanted rabbit model also provided congruent evidence for synaptic connectivity with the degenerated host retina. The results may pave the way for the development of stem cell-based therapeutics for retina degeneration.


Assuntos
Células-Tronco Pluripotentes , Degeneração Retiniana , Humanos , Camundongos , Animais , Coelhos , Laminina/genética , Retina , Células Fotorreceptoras , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Diferenciação Celular
2.
Nature ; 552(7683): 110-115, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29160304

RESUMO

Fibrosis is a common pathology in cardiovascular disease. In the heart, fibrosis causes mechanical and electrical dysfunction and in the kidney, it predicts the onset of renal failure. Transforming growth factor ß1 (TGFß1) is the principal pro-fibrotic factor, but its inhibition is associated with side effects due to its pleiotropic roles. We hypothesized that downstream effectors of TGFß1 in fibroblasts could be attractive therapeutic targets and lack upstream toxicity. Here we show, using integrated imaging-genomics analyses of primary human fibroblasts, that upregulation of interleukin-11 (IL-11) is the dominant transcriptional response to TGFß1 exposure and required for its pro-fibrotic effect. IL-11 and its receptor (IL11RA) are expressed specifically in fibroblasts, in which they drive non-canonical, ERK-dependent autocrine signalling that is required for fibrogenic protein synthesis. In mice, fibroblast-specific Il11 transgene expression or Il-11 injection causes heart and kidney fibrosis and organ failure, whereas genetic deletion of Il11ra1 protects against disease. Therefore, inhibition of IL-11 prevents fibroblast activation across organs and species in response to a range of important pro-fibrotic stimuli. These results reveal a central role of IL-11 in fibrosis and we propose that inhibition of IL-11 is a potential therapeutic strategy to treat fibrotic diseases.


Assuntos
Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Fibrose/metabolismo , Fibrose/patologia , Interleucina-11/metabolismo , Animais , Comunicação Autócrina , Células Cultivadas , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/induzido quimicamente , Coração , Humanos , Interleucina-11/antagonistas & inibidores , Interleucina-11/genética , Subunidade alfa de Receptor de Interleucina-11/deficiência , Subunidade alfa de Receptor de Interleucina-11/genética , Rim/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miocárdio/patologia , Escores de Disfunção Orgânica , Biossíntese de Proteínas , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Transgenes/genética
3.
Diabetologia ; 61(3): 641-657, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29185012

RESUMO

AIMS/HYPOTHESIS: Pancreatic islet beta cell failure causes type 2 diabetes in humans. To identify transcriptomic changes in type 2 diabetic islets, the Innovative Medicines Initiative for Diabetes: Improving beta-cell function and identification of diagnostic biomarkers for treatment monitoring in Diabetes (IMIDIA) consortium ( www.imidia.org ) established a comprehensive, unique multicentre biobank of human islets and pancreas tissues from organ donors and metabolically phenotyped pancreatectomised patients (PPP). METHODS: Affymetrix microarrays were used to assess the islet transcriptome of islets isolated either by enzymatic digestion from 103 organ donors (OD), including 84 non-diabetic and 19 type 2 diabetic individuals, or by laser capture microdissection (LCM) from surgical specimens of 103 PPP, including 32 non-diabetic, 36 with type 2 diabetes, 15 with impaired glucose tolerance (IGT) and 20 with recent-onset diabetes (<1 year), conceivably secondary to the pancreatic disorder leading to surgery (type 3c diabetes). Bioinformatics tools were used to (1) compare the islet transcriptome of type 2 diabetic vs non-diabetic OD and PPP as well as vs IGT and type 3c diabetes within the PPP group; and (2) identify transcription factors driving gene co-expression modules correlated with insulin secretion ex vivo and glucose tolerance in vivo. Selected genes of interest were validated for their expression and function in beta cells. RESULTS: Comparative transcriptomic analysis identified 19 genes differentially expressed (false discovery rate ≤0.05, fold change ≥1.5) in type 2 diabetic vs non-diabetic islets from OD and PPP. Nine out of these 19 dysregulated genes were not previously reported to be dysregulated in type 2 diabetic islets. Signature genes included TMEM37, which inhibited Ca2+-influx and insulin secretion in beta cells, and ARG2 and PPP1R1A, which promoted insulin secretion. Systems biology approaches identified HNF1A, PDX1 and REST as drivers of gene co-expression modules correlated with impaired insulin secretion or glucose tolerance, and 14 out of 19 differentially expressed type 2 diabetic islet signature genes were enriched in these modules. None of these signature genes was significantly dysregulated in islets of PPP with impaired glucose tolerance or type 3c diabetes. CONCLUSIONS/INTERPRETATION: These studies enabled the stringent definition of a novel transcriptomic signature of type 2 diabetic islets, regardless of islet source and isolation procedure. Lack of this signature in islets from PPP with IGT or type 3c diabetes indicates differences possibly due to peculiarities of these hyperglycaemic conditions and/or a role for duration and severity of hyperglycaemia. Alternatively, these transcriptomic changes capture, but may not precede, beta cell failure.


Assuntos
Bancos de Espécimes Biológicos , Diabetes Mellitus Tipo 2/metabolismo , Biologia de Sistemas/métodos , Doadores de Tecidos , Transcriptoma/genética , Idoso , Idoso de 80 Anos ou mais , Biologia Computacional , Feminino , Humanos , Masculino , Pancreatectomia
4.
Ann Rheum Dis ; 77(4): 596-601, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29348297

RESUMO

OBJECTIVES: Several common and rare risk variants have been reported for systemic sclerosis (SSc), but the effector cell(s) mediating the function of these genetic variants remains to be elucidated. While innate immune cells have been proposed as the critical targets to interfere with the disease process underlying SSc, no studies have comprehensively established their effector role. Here we investigated the contribution of monocyte-derived macrophages (MDMs) in mediating genetic susceptibility to SSc. METHODS: We carried out RNA sequencing and genome-wide genotyping in MDMs from 57 patients with SSc and 15 controls. Our differential expression and expression quantitative trait locus (eQTL) analysis in SSc was further integrated with epigenetic, expression and eQTL data from skin, monocytes, neutrophils and lymphocytes. RESULTS: We identified 602 genes upregulated and downregulated in SSc macrophages that were significantly enriched for genes previously implicated in SSc susceptibility (P=5×10-4), and 270 cis-regulated genes in MDMs. Among these, GSDMA was reported to carry an SSc risk variant (rs3894194) regulating expression of neighbouring genes in blood. We show that GSDMA is upregulated in SSc MDMs (P=8.4×10-4) but not in the skin, and is a significant eQTL in SSc macrophages and lipopolysaccharide/interferon gamma (IFNγ)-stimulated monocytes. Furthermore, we identify an SSc macrophage transcriptome signature characterised by upregulation of glycolysis, hypoxia and mTOR signalling and a downregulation of IFNγ response pathways. CONCLUSIONS: Our data further establish the link between macrophages and SSc, and suggest that the contribution of the rs3894194 risk variant to SSc susceptibility can be mediated by GSDMA expression in macrophages.


Assuntos
Predisposição Genética para Doença , Macrófagos/citologia , Proteínas de Neoplasias/genética , Escleroderma Sistêmico/genética , Transcriptoma/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Técnicas de Genotipagem , Humanos , Masculino , Locos de Características Quantitativas/genética , Fatores de Risco , Escleroderma Sistêmico/patologia , Transdução de Sinais/genética , Pele/metabolismo , Adulto Jovem
5.
Bioinformatics ; 32(4): 523-32, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26504141

RESUMO

MOTIVATION: Analysing the joint association between a large set of responses and predictors is a fundamental statistical task in integrative genomics, exemplified by numerous expression Quantitative Trait Loci (eQTL) studies. Of particular interest are the so-called ': hotspots ': , important genetic variants that regulate the expression of many genes. Recently, attention has focussed on whether eQTLs are common to several tissues, cell-types or, more generally, conditions or whether they are specific to a particular condition. RESULTS: We have implemented MT-HESS, a Bayesian hierarchical model that analyses the association between a large set of predictors, e.g. SNPs, and many responses, e.g. gene expression, in multiple tissues, cells or conditions. Our Bayesian sparse regression algorithm goes beyond ': one-at-a-time ': association tests between SNPs and responses and uses a fully multivariate model search across all linear combinations of SNPs, coupled with a model of the correlation between condition/tissue-specific responses. In addition, we use a hierarchical structure to leverage shared information across different genes, thus improving the detection of hotspots. We show the increase of power resulting from our new approach in an extensive simulation study. Our analysis of two case studies highlights new hotspots that would remain undetected by standard approaches and shows how greater prediction power can be achieved when several tissues are jointly considered. AVAILABILITY AND IMPLEMENTATION: C[Formula: see text] source code and documentation including compilation instructions are available under GNU licence at http://www.mrc-bsu.cam.ac.uk/software/.


Assuntos
Algoritmos , Teorema de Bayes , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Inflamação/genética , Doenças Inflamatórias Intestinais/genética , Locos de Características Quantitativas/genética , Software , Animais , Diabetes Mellitus Tipo 1/genética , Genômica/métodos , Humanos , Modelos Teóricos , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único/genética , Linguagens de Programação , Ratos , Distribuição Tecidual
6.
PLoS Genet ; 10(1): e1004006, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24391511

RESUMO

Recent high-throughput efforts such as ENCODE have generated a large body of genome-scale transcriptional data in multiple conditions (e.g., cell-types and disease states). Leveraging these data is especially important for network-based approaches to human disease, for instance to identify coherent transcriptional modules (subnetworks) that can inform functional disease mechanisms and pathological pathways. Yet, genome-scale network analysis across conditions is significantly hampered by the paucity of robust and computationally-efficient methods. Building on the Higher-Order Generalized Singular Value Decomposition, we introduce a new algorithmic approach for efficient, parameter-free and reproducible identification of network-modules simultaneously across multiple conditions. Our method can accommodate weighted (and unweighted) networks of any size and can similarly use co-expression or raw gene expression input data, without hinging upon the definition and stability of the correlation used to assess gene co-expression. In simulation studies, we demonstrated distinctive advantages of our method over existing methods, which was able to recover accurately both common and condition-specific network-modules without entailing ad-hoc input parameters as required by other approaches. We applied our method to genome-scale and multi-tissue transcriptomic datasets from rats (microarray-based) and humans (mRNA-sequencing-based) and identified several common and tissue-specific subnetworks with functional significance, which were not detected by other methods. In humans we recapitulated the crosstalk between cell-cycle progression and cell-extracellular matrix interactions processes in ventricular zones during neocortex expansion and further, we uncovered pathways related to development of later cognitive functions in the cortical plate of the developing brain which were previously unappreciated. Analyses of seven rat tissues identified a multi-tissue subnetwork of co-expressed heat shock protein (Hsp) and cardiomyopathy genes (Bag3, Cryab, Kras, Emd, Plec), which was significantly replicated using separate failing heart and liver gene expression datasets in humans, thus revealing a conserved functional role for Hsp genes in cardiovascular disease.


Assuntos
Cardiomiopatias/genética , Redes Reguladoras de Genes , Genoma Humano , Transcrição Gênica , Algoritmos , Animais , Cardiomiopatias/patologia , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Especificidade de Órgãos , Ratos , Transdução de Sinais/genética
7.
Sci Rep ; 14(1): 6749, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514716

RESUMO

The corneal epithelium acts as a barrier to pathogens entering the eye; corneal epithelial cells are continuously renewed by uni-potent, quiescent limbal stem cells (LSCs) located at the limbus, where the cornea transitions to conjunctiva. There has yet to be a consensus on LSC markers and their transcriptome profile is not fully understood, which may be due to using cadaveric tissue without an intact stem cell niche for transcriptomics. In this study, we addressed this problem by using single nuclei RNA sequencing (snRNAseq) on healthy human limbal tissue that was immediately snap-frozen after excision from patients undergoing cataract surgery. We identified the quiescent LSCs as a sub-population of corneal epithelial cells with a low level of total transcript counts. Moreover, TP63, KRT15, CXCL14, and ITGß4 were found to be highly expressed in LSCs and transiently amplifying cells (TACs), which constitute the corneal epithelial progenitor populations at the limbus. The surface markers SLC6A6 and ITGß4 could be used to enrich human corneal epithelial cell progenitors, which were also found to specifically express the putative limbal progenitor cell markers MMP10 and AC093496.1.


Assuntos
Epitélio Corneano , Limbo da Córnea , Humanos , Nicho de Células-Tronco , Células-Tronco do Limbo , Córnea , Epitélio Corneano/metabolismo , Perfilação da Expressão Gênica
8.
Front Immunol ; 13: 926220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844525

RESUMO

Toll-like receptor 4 (TLR4)-mediated changes in macrophages reshape intracellular lipid pools to coordinate an effective innate immune response. Although this has been previously well-studied in different model systems, it remains incompletely understood in primary human macrophages. Here we report time-dependent lipidomic and transcriptomic responses to lipopolysaccharide (LPS) in primary human macrophages from healthy donors. We grouped the variation of ~200 individual lipid species measured by LC-MS/MS into eight temporal clusters. Among all other lipids, glycosphingolipids (glycoSP) and cholesteryl esters (CE) showed a sharp increase during the resolution phase (between 8h or 16h post LPS). GlycoSP, belonging to the globoside family (Gb3 and Gb4), showed the greatest inter-individual variability among all lipids quantified. Integrative network analysis between GlycoSP/CE levels and genome-wide transcripts, identified Gb4 d18:1/16:0 and CE 20:4 association with subnetworks enriched for T cell receptor signaling (PDCD1, CD86, PTPRC, CD247, IFNG) and DC-SIGN signaling (RAF1, CD209), respectively. Our findings reveal Gb3 and Gb4 globosides as sphingolipids associated with the resolution phase of inflammatory response in human macrophages.


Assuntos
Globosídeos , Lipopolissacarídeos , Macrófagos , Cromatografia Líquida , Humanos , Macrófagos/imunologia , Espectrometria de Massas em Tandem
9.
PLoS One ; 16(1): e0243964, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33507958

RESUMO

OBJECTIVE: Test whether high dose corticosteroid pulse therapy (HDCPT) with either methylprednisolone or dexamethasone is associated with increased survival in COVID-19 patients at risk of hyper-inflammatory response. Provide some initial diagnostic criteria using laboratory markers to stratify these patients. METHODS: This is a prospective observational study, 318 met the inclusion criteria. 64 patients (20.1%) were treated with HDCPT by using at least 1.5mg/kg/24h of methylprednisolone or dexamethasone equivalent. A multivariate Cox regression (controlling for co-morbidities and other therapies) was carried out to determine whether HDCPT (among other interventions) was associated with decreased mortality. We also carried out a 30-day time course analysis of laboratory markers between survivors and non-survivors, to identify potential markers for patient stratification. RESULTS: HDCPT showed a statistically significant decrease in mortality (HR = 0.087 [95% CI 0.021-0.36]; P < 0.001). 30-day time course analysis of laboratory marker tests showed marked differences in pro-inflammatory markers between survivors and non-survivors. As diagnostic criteria to define the patients at risk of developing a COVID-19 hyper-inflammatory response, we propose the following parameters (IL-6 > = 40 pg/ml, and/or two of the following: C-reactive protein > = 100 mg/L, D-dimer > = 1000 ng/ml, ferritin > = 500 ng/ml and lactate dehydrogenase > = 300 U/L). CONCLUSIONS: HDCPT can be an effective intervention to increase COVID-19 survival rates in patients at risk of developing a COVID-19 hyper-inflammatory response, laboratory marker tests can be used to stratify these patients who should be given HDCPT. This study is not a randomized clinical trial (RCT). Future RCTs should be carried out to confirm the efficacy of HDCPT to increase the survival rates of COVID-19.


Assuntos
Corticosteroides/administração & dosagem , Tratamento Farmacológico da COVID-19 , Síndrome da Liberação de Citocina/tratamento farmacológico , Adulto , Idoso , COVID-19/imunologia , COVID-19/mortalidade , Síndrome da Liberação de Citocina/imunologia , Dexametasona/farmacologia , Feminino , Hospitalização , Humanos , Inflamação/imunologia , Inflamação/prevenção & controle , Masculino , Metilprednisolona/farmacologia , Pessoa de Meia-Idade , Estudos Prospectivos , SARS-CoV-2/isolamento & purificação , Espanha/epidemiologia , Taxa de Sobrevida
10.
JCI Insight ; 4(2)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30674726

RESUMO

Among other cells, macrophages regulate the inflammatory and reparative phases during wound healing but genetic determinants and detailed molecular pathways that modulate these processes are not fully elucidated. Here, we took advantage of normal variation in wound healing in 1,378 genetically outbred mice, and carried out macrophage RNA-sequencing profiling of mice with extreme wound healing phenotypes (i.e., slow and fast healers, n = 146 in total). The resulting macrophage coexpression networks were genetically mapped and led to the identification of a unique module under strong trans-acting genetic control by the Runx2 locus. This macrophage-mediated healing network was specifically enriched for cholesterol and fatty acid biosynthetic processes. Pharmacological blockage of fatty acid synthesis with cerulenin resulted in delayed wound healing in vivo, and increased macrophage infiltration in the wounded skin, suggesting the persistence of an unresolved inflammation. We show how naturally occurring sequence variation controls transcriptional networks in macrophages, which in turn regulate specific metabolic pathways that could be targeted in wound healing.

11.
Cell Rep ; 26(12): 3231-3245.e9, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893597

RESUMO

Regeneration of injured human heart muscle is limited and an unmet clinical need. There are no methods for the reproducible generation of clinical-quality stem cell-derived cardiovascular progenitors (CVPs). We identified laminin-221 (LN-221) as the most likely expressed cardiac laminin. We produced it as human recombinant protein and showed that LN-221 promotes differentiation of pluripotent human embryonic stem cells (hESCs) toward cardiomyocyte lineage and downregulates pluripotency and teratoma-associated genes. We developed a chemically defined, xeno-free laminin-based differentiation protocol to generate CVPs. We show high reproducibility of the differentiation protocol using time-course bulk RNA sequencing developed from different hESC lines. Single-cell RNA sequencing of CVPs derived from hESC lines supported reproducibility and identified three main progenitor subpopulations. These CVPs were transplanted into myocardial infarction mice, where heart function was measured by echocardiogram and human heart muscle bundle formation was identified histologically. This method may provide clinical-quality cells for use in regenerative cardiology.


Assuntos
Laminina/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Células-Tronco Pluripotentes/patologia , Células-Tronco Pluripotentes/transplante , Transplante de Células-Tronco
13.
Nat Commun ; 10(1): 3616, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399586

RESUMO

Cardiac fibrosis is a final common pathology in inherited and acquired heart diseases that causes cardiac electrical and pump failure. Here, we use systems genetics to identify a pro-fibrotic gene network in the diseased heart and show that this network is regulated by the E3 ubiquitin ligase WWP2, specifically by the WWP2-N terminal isoform. Importantly, the WWP2-regulated pro-fibrotic gene network is conserved across different cardiac diseases characterized by fibrosis: human and murine dilated cardiomyopathy and repaired tetralogy of Fallot. Transgenic mice lacking the N-terminal region of the WWP2 protein show improved cardiac function and reduced myocardial fibrosis in response to pressure overload or myocardial infarction. In primary cardiac fibroblasts, WWP2 positively regulates the expression of pro-fibrotic markers and extracellular matrix genes. TGFß1 stimulation promotes nuclear translocation of the WWP2 isoforms containing the N-terminal region and their interaction with SMAD2. WWP2 mediates the TGFß1-induced nucleocytoplasmic shuttling and transcriptional activity of SMAD2.


Assuntos
Fibrose/metabolismo , Redes Reguladoras de Genes , Predisposição Genética para Doença , Proteína Smad2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adolescente , Adulto , Idoso , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibrose/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença/genética , Cardiopatias/genética , Cardiopatias/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Isoformas de Proteínas , Proteína Smad2/genética , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina-Proteína Ligases/genética , Adulto Jovem
14.
J Clin Endocrinol Metab ; 104(2): 465-486, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137523

RESUMO

Context: Insulin resistance (IR) and obesity differ among ethnic groups in Singapore, with the Malays more obese yet less IR than Asian-Indians. However, the molecular basis underlying these differences is not clear. Objective: As the skeletal muscle (SM) is metabolically relevant to IR, we investigated molecular pathways in SM that are associated with ethnic differences in IR, obesity, and related traits. Design, Setting, and Main Outcome Measures: We integrated transcriptomic, genomic, and phenotypic analyses in 156 healthy subjects representing three major ethnicities in the Singapore Adult Metabolism Study. Patients: This study contains Chinese (n = 63), Malay (n = 51), and Asian-Indian (n = 42) men, aged 21 to 40 years, without systemic diseases. Results: We found remarkable diversity in the SM transcriptome among the three ethnicities, with >8000 differentially expressed genes (40% of all genes expressed in SM). Comparison with blood transcriptome from a separate Singaporean cohort showed that >95% of SM expression differences among ethnicities were unique to SM. We identified a network of 46 genes that were specifically downregulated in Malays, suggesting dysregulation of components of cellular respiration in SM of Malay individuals. We also report 28 differentially expressed gene clusters, four of which were also enriched for genes that were found in genome-wide association studies of metabolic traits and disease and correlated with variation in IR, obesity, and related traits. Conclusion: We identified extensive gene-expression changes in SM among the three Singaporean ethnicities and report specific genes and molecular pathways that might underpin and explain the differences in IR among these ethnic groups.


Assuntos
Etnicidade/genética , Resistência à Insulina/genética , Músculo Esquelético/metabolismo , Transcriptoma , Adulto , Índice de Massa Corporal , Estudos de Coortes , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Resistência à Insulina/etnologia , Masculino , Transdução de Sinais/genética , Singapura , Adulto Jovem
15.
Nat Commun ; 9(1): 4432, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30377295

RESUMO

The current expansion of autologous human keratinocytes to resurface severe wound defects still relies on murine feeder layer and calf serum in the cell culture system. Through our characterization efforts of the human skin basement membrane and murine feeder layer 3T3-J2, we identified two biologically relevant recombinant laminins-LN-511 and LN-421- as potential candidates to replace the murine feeder. Herein, we report a completely xeno-free and defined culture system utilizing these laminins which enables robust expansion of adult human skin keratinocytes. We demonstrate that our laminin system is comparable to the 3T3-J2 co-culture system in terms of basal markers' profile, colony-forming efficiency and the ability to form normal stratified epidermal structure in both in vitro and in vivo models. These results show that the proposed system may not only provide safer keratinocyte use in the clinics, but also facilitate the broader use of other cultured human epithelial cells in regenerative medicine.


Assuntos
Células Epidérmicas/citologia , Queratinócitos/citologia , Laminina/farmacologia , Células 3T3 , Adulto , Animais , Membrana Basal/efeitos dos fármacos , Membrana Basal/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Epidérmicas/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Queratinócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
16.
J Am Heart Assoc ; 7(21): e009243, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30608189

RESUMO

Background Electrocardiographic ( ECG ) parameters are regarded as intermediate phenotypes of cardiac arrhythmias. Insight into the genetic underpinnings of these parameters is expected to contribute to the understanding of cardiac arrhythmia mechanisms. Here we used HXB / BXH recombinant inbred rat strains to uncover genetic loci and candidate genes modulating ECG parameters. Methods and Results RR interval, PR interval, QRS duration, and QT c interval were measured from ECG s obtained in 6 male rats from each of the 29 available HXB / BXH recombinant inbred strains. Genes at loci displaying significant quantitative trait loci (QTL) effects were prioritized by assessing the presence of protein-altering variants, and by assessment of cis expression QTL ( eQTL ) effects and correlation of transcript abundance to the respective trait in the heart. Cardiac RNA -seq data were additionally used to generate gene co-expression networks. QTL analysis of ECG parameters identified 2 QTL for PR interval, respectively, on chromosomes 10 and 17. At the chromosome 10 QTL , cis- eQTL effects were identified for Acbd4, Cd300lg, Fam171a2, and Arhgap27; the transcript abundance in the heart of these 4 genes was correlated with PR interval. At the chromosome 17 QTL , a cis- eQTL was uncovered for Nhlrc1 candidate gene; the transcript abundance of this gene was also correlated with PR interval. Co-expression analysis furthermore identified 50 gene networks, 6 of which were correlated with PR interval or QRS duration, both parameters of cardiac conduction. Conclusions These newly identified genetic loci and gene networks associated with the ECG parameters of cardiac conduction provide a starting point for future studies with the potential of identifying novel mechanisms underlying cardiac electrical function.


Assuntos
Doença do Sistema de Condução Cardíaco/genética , Doença do Sistema de Condução Cardíaco/fisiopatologia , Eletrocardiografia , Redes Reguladoras de Genes , Locos de Características Quantitativas , Animais , Masculino , Ratos
17.
Mol Metab ; 11: 18-32, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29656108

RESUMO

OBJECTIVE: When molecular drivers of healthy adipogenesis are perturbed, this can cause hepatic steatosis. The role of arachidonic acid (AA) and its downstream enzymatic cascades, such as cyclooxygenase, in adipogenesis is well established. The exact contribution of the P450 epoxygenase pathway, however, remains to be established. Enzymes belonging to this pathway are mainly encoded by the CYP2J locus which shows extensive allelic expansion in mice. Here we aimed to establish the role of endogenous epoxygenase during adipogenesis under homeostatic and metabolic stress conditions. METHODS: We took advantage of the simpler genetic architecture of the Cyp2j locus in the rat and used a Cyp2j4 (orthologue of human CYP2J2) knockout rat in two models of metabolic dysfunction: physiological aging and cafeteria diet (CAF). The phenotyping of Cyp2j4-/- rats under CAF was integrated with proteomics (LC-MS/MS) and lipidomics (LC-MS) analyses in the liver and the adipose tissue. RESULTS: We report that Cyp2j4 deletion causes adipocyte dysfunction under metabolic challenges. This is characterized by (i) down-regulation of white adipose tissue (WAT) PPARγ and C/EBPα, (ii) adipocyte hypertrophy, (iii) extracellular matrix remodeling, and (iv) alternative usage of AA pathway. Specifically, in Cyp2j4-/- rats treated with a cafeteria diet, the dysfunctional adipogenesis is accompanied by exacerbated weight gain, hepatic lipid accumulation, and dysregulated gluconeogenesis. CONCLUSION: These results suggest that AA epoxygenases are essential regulators of healthy adipogenesis. Our results uncover their synergistic role in fine-tuning AA pathway in obesity-mediated hepatic steatosis.


Assuntos
Adipogenia , Envelhecimento/metabolismo , Família 2 do Citocromo P450/metabolismo , Dieta da Carga de Carboidratos/efeitos adversos , Gluconeogênese/efeitos dos fármacos , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Ácido Araquidônico/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células Cultivadas , Família 2 do Citocromo P450/genética , Dieta Hiperlipídica/efeitos adversos , Matriz Extracelular/metabolismo , Metabolismo dos Lipídeos , Masculino , Obesidade/etiologia , PPAR gama/metabolismo , Ratos , Ratos Wistar
18.
Matrix Biol ; 70: 5-19, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29601863

RESUMO

The efficacy of islet transplantation for diabetes treatment suffers from lack of cadaver-derived islets, islet necrosis and long transfer times prior to transplantation. Here, we developed a method for culturing mouse and human islets in vitro on α5-laminins, which are natural components of islet basement membranes. Adhering islets spread to form layers of 1-3 cells in thickness and remained normoxic and functional for at least 7 days in culture. In contrast, spherical islets kept in suspension developed hypoxia and central necrosis within 16 h. Transplantation of 110-150 mouse islets cultured on α5-laminin-coated polydimethylsiloxane membranes for 3-7 days normalized blood glucose already within 3 days in mice with streptozotocin-induced diabetes. RNA-sequencing of isolated and cultured mouse islets provided further evidence for the adhesion and spreading achieved with α5-laminin. Our results suggest that use of such in vitro expanded islets may significantly enhance the efficacy of islet transplantation treatment for diabetes.


Assuntos
Técnicas de Cultura de Células , Diabetes Mellitus Experimental/terapia , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/citologia , Laminina/química , Animais , Glicemia/metabolismo , Proliferação de Células , Células Cultivadas , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/cirurgia , Matriz Extracelular/química , Humanos , Insulina/biossíntese , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/cirurgia , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estreptozocina , Resultado do Tratamento
19.
Methods Mol Biol ; 1488: 337-362, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27933533

RESUMO

Systems genetics stems from systems biology and similarly employs integrative modeling approaches to describe the perturbations and phenotypic effects observed in a complex system. However, in the case of systems genetics the main source of perturbation is naturally occurring genetic variation, which can be analyzed at the systems-level to explain the observed variation in phenotypic traits. In contrast with conventional single-variant association approaches, the success of systems genetics has been in the identification of gene networks and molecular pathways that underlie complex disease. In addition, systems genetics has proven useful in the discovery of master trans-acting genetic regulators of functional networks and pathways, which in many cases revealed unexpected gene targets for disease. Here we detail the central components of a fully integrated systems genetics approach to complex disease, starting from assessment of genetic and gene expression variation, linking DNA sequence variation to mRNA (expression QTL mapping), gene regulatory network analysis and mapping the genetic control of regulatory networks. By summarizing a few illustrative (and successful) examples, we highlight how different data-modeling strategies can be effectively integrated in a systems genetics study.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Estudos de Associação Genética/métodos , Genética Populacional/métodos , Herança Multifatorial , Biologia de Sistemas/métodos , Mapeamento Cromossômico , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Locos de Características Quantitativas , RNA Mensageiro/genética , Fatores de Transcrição/genética
20.
Genome Biol ; 18(1): 170, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28903782

RESUMO

BACKGROUND: Genetic variation is an important determinant of RNA transcription and splicing, which in turn contributes to variation in human traits, including cardiovascular diseases. RESULTS: Here we report the first in-depth survey of heart transcriptome variation using RNA-sequencing in 97 patients with dilated cardiomyopathy and 108 non-diseased controls. We reveal extensive differences of gene expression and splicing between dilated cardiomyopathy patients and controls, affecting known as well as novel dilated cardiomyopathy genes. Moreover, we show a widespread effect of genetic variation on the regulation of transcription, isoform usage, and allele-specific expression. Systematic annotation of genome-wide association SNPs identifies 60 functional candidate genes for heart phenotypes, representing 20% of all published heart genome-wide association loci. Focusing on the dilated cardiomyopathy phenotype we found that eQTL variants are also enriched for dilated cardiomyopathy genome-wide association signals in two independent cohorts. CONCLUSIONS: RNA transcription, splicing, and allele-specific expression are each important determinants of the dilated cardiomyopathy phenotype and are controlled by genetic factors. Our results represent a powerful resource for the field of cardiovascular genetics.


Assuntos
Cardiomiopatia Dilatada/genética , Variação Genética , Miocárdio/metabolismo , Transcriptoma , Adulto , Alelos , Processamento Alternativo , Feminino , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Ventrículos do Coração/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa