Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Gerontology ; 69(6): 684-693, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36538907

RESUMO

INTRODUCTION: Immunosenescence and inflammaging have been implicated in the pathophysiology of frailty. Torquetenovirus (TTV), a single-stranded DNA anellovirus, the major component of the human blood virome, shows an increased replication rate with advancing age. An elevated TTV viremia has been associated with an impaired immune function and an increased risk of mortality in the older population. The objective of this study was to analyze the relation between TTV viremia, physical frailty, and cognitive impairment. METHODS: TTV viremia was measured in 1,131 nonfrail, 45 physically frail, and 113 cognitively impaired older adults recruited in the MARK-AGE study (overall mean age 64.7 ± 5.9 years), and then the results were checked in two other independent cohorts from Spain and Portugal, including 126 frail, 252 prefrail, and 141 nonfrail individuals (overall mean age: 77.5 ± 8.3 years). RESULTS: TTV viremia ≥4log was associated with physical frailty (OR: 4.69; 95% CI: 2.06-10.67, p < 0.0001) and cognitive impairment (OR: 3.49, 95% CI: 2.14-5.69, p < 0.0001) in the MARK-AGE population. The association between TTV DNA load and frailty status was confirmed in the Spanish cohort, while a slight association with cognitive impairment was observed (OR: 1.33; 95% CI: 1.000-1.773), only in the unadjusted model. No association between TTV load and frailty or cognitive impairment was found in the Portuguese sample, although a negative association between TTV viremia and MMSE score was observed in Spanish and Portuguese females. CONCLUSIONS: These findings demonstrate an association between TTV viremia and physical frailty, while the association with cognitive impairment was observed only in the younger population from the MARK-AGE study. Further research is necessary to clarify TTV's clinical relevance in the onset and progression of frailty and cognitive decline in older individuals.


Assuntos
Disfunção Cognitiva , Fragilidade , Torque teno virus , Feminino , Idoso , Humanos , Idoso de 80 Anos ou mais , Fragilidade/epidemiologia , Torque teno virus/fisiologia , Viremia/complicações , Idoso Fragilizado/psicologia , Avaliação Geriátrica , Disfunção Cognitiva/complicações , Disfunção Cognitiva/epidemiologia
2.
Curr Issues Mol Biol ; 44(2): 654-669, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35723331

RESUMO

The effect of confined and isolated experience on astronauts' health is an important factor to consider for future space exploration missions. The more confined and isolated humans are, the more likely they are to develop negative behavioral or cognitive conditions such as a mood decline, sleep disorder, depression, fatigue and/or physiological problems associated with chronic stress. Molecular mediators of chronic stress, such as cytokines, stress hormones or reactive oxygen species (ROS) are known to induce cellular damage including damage to the DNA. In view of the growing evidence of chronic stress-induced DNA damage, we conducted an explorative study and measured DNA strand breaks in 20 healthy adults. The participants were grouped into five teams (missions). Each team was composed of four participants, who spent 45 days in isolation and confinement in NASA's Human Exploration Research Analog (HERA). Endogenous DNA integrity, ex-vivo radiation-induced DNA damage and the rates of DNA repair were assessed every week. Our results show a high inter-individual variability as well as differences between the missions, which cannot be explained by inter-individual variability alone. The ages and sex of the participants did not appear to influence the results.

3.
Br J Nutr ; 128(3): 433-443, 2022 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-34794520

RESUMO

Self-rated health (SRH) is associated with higher risk of death. Since low plasma levels of fat-soluble vitamins are related to mortality, we aimed to assess whether plasma concentrations of vitamins A, D and E were associated with SRH in the MARK-AGE study. We included 3158 participants (52 % female) aged between 35 and 75 years. Cross-sectional data were collected via questionnaires. An enzyme immunoassay quantified 25-hydroxyvitamin D and HPLC determined α-tocopherol and retinol plasma concentrations. The median 25-hydroxyvitamin D and retinol concentrations differed significantly (P < 0·001) between SRH categories and were lower in the combined fair/poor category v. the excellent, very good and good categories (25-hydroxvitamin D: 40·8 v. 51·9, 49·3, 46·7 nmol/l, respectively; retinol: 1·67 v. 1·75, 1·74, 1·70 µmol/l, respectively). Both vitamin D and retinol status were independently associated with fair/poor SRH in multiple regression analyses: adjusted OR (95 % CI) for the vitamin D insufficiency, deficiency and severe deficiency categories were 1·33 (1·06-1·68), 1·50 (1·17-1·93) and 1·83 (1·34-2·50), respectively; P = 0·015, P = 0·001 and P < 0·001, and for the second/third/fourth retinol quartiles: 1·44 (1·18-1·75), 1·57 (1·28-1·93) and 1·49 (1·20-1·84); all P < 0·001. No significant associations were reported for α-tocopherol quartiles. Lower vitamin A and D status emerged as independent markers for fair/poor SRH. Further insights into the long-term implications of these modifiable nutrients on health status are warranted.


Assuntos
Vitamina A , alfa-Tocoferol , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Estudos Transversais , Autorrelato , Vitaminas , Calcifediol , Nível de Saúde
4.
Arch Biochem Biophys ; 713: 109061, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34662556

RESUMO

A redox steady state is important in maintaining vital cellular functions and is therefore homeostatically controlled by a number of antioxidative agents, the most important of which are enzymes. Oxidative Stress (OS) is associated with (or/and caused by) excessive production of damaging reactive oxygen and/or nitrogen species (ROS, RNS), which play a role in many pathologies. Because OS is a risk factor for many diseases, much effort (and money) is devoted to early diagnosis and treatment of OS. The desired benefit of the "identify (OS) and treat (by low molecular weight antioxidants, LMWA)" approach is to enable selective treatment of patients under OS. The present work aims at gaining understanding of the benefit of the antioxidants based on interrelationship between the concentration of different OS biomarkers and LMWA. Both the concentrations of a variety of biomarkers and of LMWA were previously determined and some analyses have been published by the MARK-AGE team. For the sake of simplicity, we assume that the concentration of an OS biomarker is a linear function of the concentration of a LMWA (if the association is due to causal relationship). A negative slope of this dependence (and sign of the correlation coefficient) can be intuitively expected for an antioxidant, a positive slope indicates that the LMWA is pro-oxidative, whereas extrapolation of the OS biomarker to [LMWA] = 0 is an approximation of the concentration of the OS biomarker in the absence of the LMWA. Using this strategy, we studied the effects of 12 LMWA (including tocopherols, carotenoids and ascorbic acid) on the OS status, as observed with 8 biomarkers of oxidative damage (including malondialdehyde, protein carbonyls, 3-nitrotyrosine). The results of this communication show that in a cross-sectional study the LMWA contribute little to the redox state and that different "antioxidants" are very different, so that single LMWA treatment of OS is not scientifically justified assuming our simple model. In view of the difficulty of quantitating the OS and the very different effects of various LMWA, the use of the "identify and treat" approach is questionable.


Assuntos
Antioxidantes/farmacologia , Biomarcadores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/química , Estudos Transversais , Humanos , Peso Molecular , Oxirredução
5.
Eur J Appl Physiol ; 121(7): 2015-2026, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33811556

RESUMO

PURPOSE: Spaceflight impairs physical capacity. Here we assessed the protective effect of artificial gravity (AG) on aerobic exercise capacity and muscle function during bed rest, a spaceflight analogue. METHODS: 24 participants (33 ± 9 years, 175 ± 9 cm, 74 ± 10 kg, 8 women) were randomly allocated to one of three groups: continuous AG (cAG), intermittent AG (iAG) or control (CTRL). All participants were subjected to 60 days of six-degree head-down tilt bed rest, and subjects of the intervention groups completed 30 min of centrifugation per day: cAG continuously and iAG for 6 × 5 min, with an acceleration of 1g at the center of mass. Physical capacity was assessed before and after bed rest via maximal voluntary contractions, cycling spiroergometry, and countermovement jumps. RESULTS: AG had no significant effect on aerobic exercise capacity, flexor muscle function and isometric knee extension strength or rate of force development (RFD). However, AG mitigated the effects of bed rest on jumping power (group * time interaction of the rmANOVA p < 0.001; iAG - 25%, cAG - 26%, CTRL - 33%), plantar flexion strength (group * time p = 0.003; iAG - 35%, cAG - 31%, CTRL - 48%) and plantar flexion RFD (group * time p = 0.020; iAG - 28%, cAG - 12%, CTRL - 40%). Women showed more pronounced losses than men in jumping power (p < 0.001) and knee extension strength (p = 0.010). CONCLUSION: The AG protocols were not suitable to maintain aerobic exercise capacity, probably due to the very low cardiorespiratory demand of this intervention. However, they mitigated some losses in muscle function, potentially due to the low-intensity muscle contractions during centrifugation used to avoid presyncope.


Assuntos
Repouso em Cama , Tolerância ao Exercício/fisiologia , Gravidade Alterada , Adulto , Ergometria , Feminino , Decúbito Inclinado com Rebaixamento da Cabeça , Humanos , Masculino , Contração Muscular/fisiologia , Fatores de Tempo
6.
Int J Mol Sci ; 20(12)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248182

RESUMO

Several studies indicate that acute exercise induces DNA damage, whereas regular exercise increases DNA repair kinetics. Although the molecular mechanisms are not completely understood, the induction of endogenous reactive oxygen species (ROS) during acute exhaustive exercise due to metabolic processes might be responsible for the observed DNA damage, while an adaptive increase in antioxidant capacity due to regular physical activity seems to play an important protective role. However, the protective effect of physical activity on exogenously induced DNA damage in human immune cells has been poorly investigated. We asked the question whether individuals with a high aerobic capacity would have an enhanced response to radiation-induced DNA damage. Immune cells are highly sensitive to radiation and exercise affects lymphocyte dynamics and immune function. Therefore, we measured endogenous and radiation-induced DNA strand breaks and poly (ADP-ribose) polymerase-1 (PARP1) activity in peripheral blood mononuclear cells (PBMCs) from endurance-trained (maximum rate of oxygen consumption measured during incremental exercise V'O2max > 55 mL/min/kg) and untrained (V'O2max < 45 mL/min/kg) young healthy male volunteers before and after exhaustive exercise. Our results indicate that: (i) acute exercise induces DNA strand breaks in lymphocytes only in untrained individuals, (ii) following acute exercise, trained individuals repaired radiation-induced DNA strand breaks faster than untrained individuals, and (iii) trained subjects retained a higher level of radiation-induced PARP1 activity after acute exercise. The results of the present study indicate that increased aerobic fitness can protect immune cells against radiation-induced DNA strand breaks.


Assuntos
Reparo do DNA , Exercício Físico , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Poli(ADP-Ribose) Polimerase-1/metabolismo , Radiação Ionizante , Dano ao DNA , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos da radiação , Aptidão Física
7.
Int J Mol Sci ; 20(9)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083348

RESUMO

Detrimental health consequences from exposure to space radiation are a major concern for long-duration human exploration missions to the Moon or Mars. Cellular responses to radiation are expected to be heterogeneous for space radiation exposure, where only high-energy protons and other particles traverse a fraction of the cells. Therefore, assessing DNA damage and DNA damage response in individual cells is crucial in understanding the mechanisms by which cells respond to different particle types and energies in space. In this project, we identified a cell-specific signature for radiation response by using single-cell transcriptomics of human lymphocyte subpopulations. We investigated gene expression in individual human T lymphocytes 3 h after ex vivo exposure to 2-Gy gamma rays while using the single-cell sequencing technique (10X Genomics). In the process, RNA was isolated from ~700 irradiated and ~700 non-irradiated control cells, and then sequenced with ~50 k reads/cell. RNA in each of the cells was distinctively barcoded prior to extraction to allow for quantification for individual cells. Principal component and clustering analysis of the unique molecular identifier (UMI) counts classified the cells into three groups or sub-types, which correspond to CD4+, naïve, and CD8+/NK cells. Gene expression changes after radiation exposure were evaluated using negative binomial regression. On average, BBC3, PCNA, and other TP53 related genes that are known to respond to radiation in human T cells showed increased activation. While most of the TP53 responsive genes were upregulated in all groups of cells, the expressions of IRF1, STAT1, and BATF were only upregulated in the CD4+ and naïve groups, but were unchanged in the CD8+/NK group, which suggests that the interferon-gamma pathway does not respond to radiation in CD8+/NK cells. Thus, single-cell RNA sequencing technique was useful for simultaneously identifying the expression of a set of genes in individual cells and T lymphocyte subpopulation after gamma radiation exposure. The degree of dependence of UMI counts between pairs of upregulated genes was also evaluated to construct a similarity matrix for cluster analysis. The cluster analysis identified a group of TP53-responsive genes and a group of genes that are involved in the interferon gamma pathway, which demonstrate the potential of this method for identifying previously unknown groups of genes with similar expression patterns.


Assuntos
Exposição à Radiação , Fator de Transcrição STAT1/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo , Análise por Conglomerados , Raios gama , Humanos , Imunofenotipagem , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Regulação para Cima/genética , Regulação para Cima/efeitos da radiação
8.
Mol Cell Biochem ; 442(1-2): 155-168, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29098506

RESUMO

Energetic protons are the most abundant particle type in space and can pose serious health risks to astronauts during long-duration missions. The health effects of proton exposure are also a concern for cancer patients undergoing radiation treatment with accelerated protons. To investigate the damage induced by energetic protons in vivo to radiosensitive organs, 6-week-old BALB/c male mice were subjected to 250 MeV proton radiation at whole-body doses of 0.1, 1, and 2 Gy. The gastrointestinal (GI) tract of each exposed animal was dissected 4 h post-irradiation, and the isolated small intestinal tissue was analyzed for histopathological and gene expression changes. Histopathologic observation of the tissue using standard hematoxylin and eosin (H&E) staining methods to screen for morphologic changes showed a marked increase in apoptotic lesions for even the lowest dose of 0.1 Gy, similar to X- or γ rays. The percentage of apoptotic cells increased dose-dependently, but the dose response appeared supralinear, indicating hypersensitivity at low doses. A significant decrease in surviving crypts and mucosal surface area, as well as in cell proliferation, was also observed in irradiated mice. Gene expression analysis of 84 genes involved in the apoptotic process showed that most of the genes affected by protons were common between the low (0.1 Gy) and high (1 and 2 Gy) doses. However, the genes that were distinctively responsive to the low or high doses suggest that high doses of protons may cause apoptosis in the small intestine by direct damage to the DNA, whereas low doses of protons may trigger apoptosis through a different stress response mechanism.


Assuntos
Apoptose/efeitos da radiação , Dano ao DNA , Mucosa Intestinal/metabolismo , Prótons/efeitos adversos , Irradiação Corporal Total/efeitos adversos , Animais , Relação Dose-Resposta à Radiação , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Lesões Experimentais por Radiação
9.
Int J Mol Sci ; 19(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469384

RESUMO

The implementation of rotating-wall vessels (RWVs) for studying the effect of lack of gravity has attracted attention, especially in the fields of stem cells, tissue regeneration, and cancer research. Immune cells incubated in RWVs exhibit several features of immunosuppression including impaired leukocyte proliferation, cytokine responses, and antibody production. Interestingly, stress hormones influence cellular immune pathways affected by microgravity, such as cell proliferation, apoptosis, DNA repair, and T cell activation. These pathways are crucial defense mechanisms that protect the cell from toxins, pathogens, and radiation. Despite the importance of the adrenergic receptor in regulating the immune system, the effect of microgravity on the adrenergic system has been poorly studied. Thus, we elected to investigate the synergistic effects of isoproterenol (a sympathomimetic drug), radiation, and microgravity in nonstimulated immune cells. Peripheral blood mononuclear cells were treated with the sympathomimetic drug isoproterenol, exposed to 0.8 or 2 Gy γ-radiation, and incubated in RWVs. Mixed model regression analyses showed significant synergistic effects on the expression of the ß2-adrenergic receptor gene (ADRB2). Radiation alone increased ADRB2 expression, and cells incubated in microgravity had more DNA strand breaks than cells incubated in normal gravity. We observed radiation-induced cytokine production only in microgravity. Prior treatment with isoproterenol clearly prevents most of the microgravity-mediated effects. RWVs may be a useful tool to provide insight into novel regulatory pathways, providing benefit not only to astronauts but also to patients suffering from immune disorders or undergoing radiotherapy.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Reparo do DNA , Raios gama , Isoproterenol/farmacologia , Leucócitos/imunologia , Ausência de Peso , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/efeitos da radiação , Ativação Linfocitária , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo
10.
Mutagenesis ; 32(1): 215-232, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27565834

RESUMO

The rapid development of the engineered nanomaterial (ENM) manufacturing industry has accelerated the incorporation of ENMs into a wide variety of consumer products across the globe. Unintentionally or not, some of these ENMs may be introduced into the environment or come into contact with humans or other organisms resulting in unexpected biological effects. It is thus prudent to have rapid and robust analytical metrology in place that can be used to critically assess and/or predict the cytotoxicity, as well as the potential genotoxicity of these ENMs. Many of the traditional genotoxicity test methods [e.g. unscheduled DNA synthesis assay, bacterial reverse mutation (Ames) test, etc.,] for determining the DNA damaging potential of chemical and biological compounds are not suitable for the evaluation of ENMs, due to a variety of methodological issues ranging from potential assay interferences to problems centered on low sample throughput. Recently, a number of sensitive, high-throughput genotoxicity assays/platforms (CometChip assay, flow cytometry/micronucleus assay, flow cytometry/γ-H2AX assay, automated 'Fluorimetric Detection of Alkaline DNA Unwinding' (FADU) assay, ToxTracker reporter assay) have been developed, based on substantial modifications and enhancements of traditional genotoxicity assays. These new assays have been used for the rapid measurement of DNA damage (strand breaks), chromosomal damage (micronuclei) and for detecting upregulated DNA damage signalling pathways resulting from ENM exposures. In this critical review, we describe and discuss the fundamental measurement principles and measurement endpoints of these new assays, as well as the modes of operation, analytical metrics and potential interferences, as applicable to ENM exposures. An unbiased discussion of the major technical advantages and limitations of each assay for evaluating and predicting the genotoxic potential of ENMs is also provided.


Assuntos
Dano ao DNA , Ensaios de Triagem em Larga Escala/métodos , Testes de Mutagenicidade/métodos , Nanoestruturas/toxicidade , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , DNA/efeitos dos fármacos , Humanos
11.
Int J Mol Sci ; 18(6)2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561779

RESUMO

In space, living organisms are exposed to multiple stress factors including microgravity and space radiation. For humans, these harmful environmental factors have been known to cause negative health impacts such as bone loss and immune dysfunction. Understanding the mechanisms by which spaceflight impacts human health at the molecular level is critical not only for accurately assessing the risks associated with spaceflight, but also for developing effective countermeasures. Over the years, a number of studies have been conducted under real or simulated space conditions. RNA and protein levels in cellular and animal models have been targeted in order to identify pathways affected by spaceflight. Of the many pathways responsive to the space environment, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) network appears to commonly be affected across many different cell types under the true or simulated spaceflight conditions. NF-κB is of particular interest, as it is associated with many of the spaceflight-related health consequences. This review intends to summarize the transcriptomics studies that identified NF-κB as a responsive pathway to ground-based simulated microgravity or the true spaceflight condition. These studies were carried out using either human cell or animal models. In addition, the review summarizes the studies that focused specifically on NF-κB pathway in specific cell types or organ tissues as related to the known spaceflight-related health risks including immune dysfunction, bone loss, muscle atrophy, central nerve system (CNS) dysfunction, and risks associated with space radiation. Whether the NF-κB pathway is activated or inhibited in space is dependent on the cell type, but the potential health impact appeared to be always negative. It is argued that more studies on NF-κB should be conducted to fully understand this particular pathway for the benefit of crew health in space.


Assuntos
Nível de Saúde , NF-kappa B/genética , Transdução de Sinais/genética , Voo Espacial/métodos , Transcriptoma , Simulação de Ausência de Peso/métodos , Animais , Redes Reguladoras de Genes , Humanos , NF-kappa B/metabolismo
12.
Int J Mol Sci ; 18(11)2017 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-29156538

RESUMO

The loss of bone mass and alteration in bone physiology during space flight are one of the major health risks for astronauts. Although the lack of weight bearing in microgravity is considered a risk factor for bone loss and possible osteoporosis, organisms living in space are also exposed to cosmic radiation and other environmental stress factors. As such, it is still unclear as to whether and by how much radiation exposure contributes to bone loss during space travel, and whether the effects of microgravity and radiation exposure are additive or synergistic. Bone is continuously renewed through the resorption of old bone by osteoclast cells and the formation of new bone by osteoblast cells. In this study, we investigated the combined effects of microgravity and radiation by evaluating the maturation of a hematopoietic cell line to mature osteoclasts. RAW 264.7 monocyte/macrophage cells were cultured in rotating wall vessels that simulate microgravity on the ground. Cells under static 1g or simulated microgravity were exposed to γ rays of varying doses, and then cultured in receptor activator of nuclear factor-κB ligand (RANKL) for the formation of osteoclast giant multinucleated cells (GMCs) and for gene expression analysis. Results of the study showed that radiation alone at doses as low as 0.1 Gy may stimulate osteoclast cell fusion as assessed by GMCs and the expression of signature genes such as tartrate resistant acid phosphatase (Trap) and dendritic cell-specific transmembrane protein (Dcstamp). However, osteoclast cell fusion decreased for doses greater than 0.5 Gy. In comparison to radiation exposure, simulated microgravity induced higher levels of cell fusion, and the effects of these two environmental factors appeared additive. Interestingly, the microgravity effect on osteoclast stimulatory transmembrane protein (Ocstamp) and Dcstamp expressions was significantly higher than the radiation effect, suggesting that radiation may not increase the synthesis of adhesion molecules as much as microgravity.


Assuntos
Macrófagos/citologia , Proteínas de Membrana/metabolismo , Osteoclastos/citologia , Fosfatase Ácida Resistente a Tartarato/metabolismo , Ausência de Peso/efeitos adversos , Animais , Técnicas de Cultura de Células , Fusão Celular , Proliferação de Células/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Camundongos , Osteoclastos/metabolismo , Osteoclastos/efeitos da radiação , Ligante RANK/farmacologia , Células RAW 264.7
13.
BMC Genomics ; 15: 487, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24942464

RESUMO

Understanding the links between genetic, epigenetic and non-genetic factors throughout the lifespan and across generations and their role in disease susceptibility and disease progression offer entirely new avenues and solutions to major problems in our society. To overcome the numerous challenges, we have come up with nine major conclusions to set the vision for future policies and research agendas at the European level.


Assuntos
Epigênese Genética , Genoma , Pesquisa , Epigenômica , Genômica , Humanos
14.
Psychother Psychosom ; 83(5): 289-97, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25116690

RESUMO

BACKGROUND: Previous research reveals an association between traumatic stress and an increased risk for numerous diseases, including cancer. At the molecular level, stress may increase carcinogenesis via increased DNA damage and impaired DNA repair mechanisms. We assessed DNA breakage in peripheral blood mononuclear cells from individuals with post-traumatic stress disorder (PTSD) and measured the cellular capacity to repair single-strand breaks after exposure to ionizing X-radiation. We also investigated the effect of psychotherapy on both DNA breakage and DNA repair. METHODS: In a first study we investigated DNA breakage and repair in 34 individuals with PTSD and 31 controls. Controls were subdivided into 11 trauma-exposed subjects and 20 individuals without trauma exposure. In a second study, we analysed the effect of psychotherapy (Narrative Exposure Therapy) on DNA breakage and repair. Thirty-eight individuals with PTSD were randomly assigned to either a treatment or a waitlist control condition. Follow-up was performed 4 months and 1 year after therapy. RESULTS: In study 1 we found higher levels of basal DNA breakage in individuals with PTSD and trauma-exposed subjects than in controls, indicating that traumatic stress is associated with DNA breakage. However, single-strand break repair was unimpaired in individuals with PTSD. In study 2, we found that psychotherapy reversed not only PTSD symptoms, but also DNA strand break accumulation. CONCLUSION: Our results show - for the first time in vivo - an association between traumatic stress and DNA breakage; they also demonstrate changes at the molecular level, i.e., the integrity of DNA, after psychotherapeutic interventions.


Assuntos
Quebras de DNA , Transtornos de Estresse Pós-Traumáticos/complicações , Adolescente , Adulto , Estudos de Casos e Controles , Reparo do DNA , Feminino , Humanos , Terapia Implosiva , Masculino , Pessoa de Meia-Idade , Terapia Narrativa , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/terapia , Estresse Psicológico/complicações , Estresse Psicológico/genética , Estresse Psicológico/terapia , Adulto Jovem
15.
Geroscience ; 46(2): 1657-1669, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37715843

RESUMO

Growth differentiation factor-15 (GDF15) might be involved in the development of cognitive frailty and depression. Therefore, we evaluated cross-sectional associations of plasma GDF15 with combined cognitive-frailty-and-depression in older (i.e. ≥ 55 years) and younger adults of the MARK-AGE study. In the present work, samples and data of MARK-AGE ("European study to establish bioMARKers of human AGEing") participants (N = 2736) were analyzed. Cognitive frailty was determined by the global cognitive functioning score (GCF) and depression by the Self-Rating Depression Scale (SDS score). Adults were classified into three groups: (I) neither-cognitive-frailty-nor-depression, (II) either-cognitive-frailty-or-depression or (III) both-cognitive-frailty-and-depression. Cross-sectional associations were determined by unadjusted and by age, BMI, sex, comorbidities and hsCRP-adjusted linear and logistic regression analyses. Cognitive frailty, depression, age and GDF15 were significantly related within the whole study sample. High GDF15 levels were significantly associated with both-cognitive-frailty-and-depression (adjusted ß = 0.177 [0.044 - 0.310], p = 0.009), and with low GCF scores and high SDS scores. High GDF15 concentrations and quartiles were significantly associated with higher odds to have both-cognitive-frailty-and-depression (adjusted odds ratio = 2.353 [1.267 - 4.372], p = 0.007; and adjusted odds ratio = 1.414 [1.025 - 1.951], p = 0.035, respectively) independent of age, BMI, sex, comorbidities and hsCRP. These associations remained significant when evaluating older adults. We conclude that plasma GDF15 concentrations are significantly associated with combined cognitive-frailty-and-depression status and, with cognitive frailty and depressive symptoms separately in old as well as young community-dwelling adults.


Assuntos
Fragilidade , Humanos , Idoso , Idoso Fragilizado/psicologia , Depressão/epidemiologia , Proteína C-Reativa , Estudos Transversais , Cognição , Fator 15 de Diferenciação de Crescimento
16.
Anal Chem ; 85(12): 5801-9, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23718684

RESUMO

Metabolism is essential to understand human health. To characterize human metabolism, a high-resolution read-out of the metabolic status under various physiological conditions, either in health or disease, is needed. Metabolomics offers an unprecedented approach for generating system-specific biochemical definitions of a human phenotype through the capture of a variety of metabolites in a single measurement. The emergence of large cohorts in clinical studies increases the demand of technologies able to analyze a large number of measurements, in an automated fashion, in the most robust way. NMR is an established metabolomics tool for obtaining metabolic phenotypes. Here, we describe the analysis of NMR-based urinary profiles for metabolic studies, challenged to a large human study (3007 samples). This method includes the acquisition of nuclear Overhauser effect spectroscopy one-dimensional and J-resolved two-dimensional (J-Res-2D) (1)H NMR spectra obtained on a 600 MHz spectrometer, equipped with a 120 µL flow probe, coupled to a flow-injection analysis system, in full automation under the control of a sampler manager. Samples were acquired at a throughput of ~20 (or 40 when J-Res-2D is included) min/sample. The associated technical analysis error over the full series of analysis is 12%, which demonstrates the robustness of the method. With the aim to describe an overall metabolomics workflow, the quantification of 36 metabolites, mainly related to central carbon metabolism and gut microbial host cometabolism, was obtained, as well as multivariate data analysis of the full spectral profiles. The metabolic read-outs generated using our analytical workflow can therefore be considered for further pathway modeling and/or biological interpretation.


Assuntos
Automação Laboratorial/métodos , Espectroscopia de Ressonância Magnética/métodos , Metaboloma/fisiologia , Urinálise/métodos , Adulto , Idoso , Automação Laboratorial/normas , Feminino , Análise de Injeção de Fluxo/métodos , Análise de Injeção de Fluxo/normas , Humanos , Espectroscopia de Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Urinálise/normas
17.
Mutagenesis ; 28(4): 411-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23486648

RESUMO

Curcumin, a phytochemical derived from the rhizome of Curcuma longa, is a very potent inducer of cancer cell death. It is believed that cancer cells are more sensitive to curcumin treatment than normal cells. Curcumin has been shown to act as a prooxidant and induce DNA lesions in normal cells. We were interested in whether curcumin induces DNA damage and the DNA damage response (DDR) signalling pathway leading to apoptosis in normal resting human T cells. To this end, we analysed DNA damage after curcumin treatment of resting human T cells (CD3(+)) and of proliferating leukaemic Jurkat cells by the fluorimetric detection of alkaline DNA unwinding (FADU) assay and immunocytochemical detection of γ-H2AX foci. We showed that curcumin-treated Jurkat cells and resting T cells showed neither DNA lesions nor did they activate key proteins in the DDR signalling pathway, such as phospho-ATM and phospho-p53. However, both types of cell were equally sensitive to curcumin-induced apoptosis and displayed activation of caspase-8 but not of DNA damage-dependent caspase-2. Altogether, our results revealed that curcumin can induce apoptosis of normal resting human T cells that is not connected with DNA damage.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/genética , Curcumina/farmacologia , Dano ao DNA , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Caspase 8/metabolismo , Humanos , Células Jurkat
18.
Geroscience ; 45(1): 85-103, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35864375

RESUMO

Circulating cell-free DNA (cf-DNA) has emerged as a promising biomarker of ageing, tissue damage and cellular stress. However, less is known about health behaviours, ageing phenotypes and metabolic processes that lead to elevated cf-DNA levels. We sought to analyse the relationship of circulating cf-DNA level to age, sex, smoking, physical activity, vegetable consumption, ageing phenotypes (physical functioning, the number of diseases, frailty) and an extensive panel of biomarkers including blood and urine metabolites and inflammatory markers in three human cohorts (N = 5385; 17-82 years). The relationships were assessed using correlation statistics, and linear and penalised regressions (the Lasso), also stratified by sex.cf-DNA levels were significantly higher in men than in women, and especially in middle-aged men and women who smoke, and in older more frail individuals. Correlation statistics of biomarker data showed that cf-DNA level was higher with elevated inflammation (C-reactive protein, interleukin-6), and higher levels of homocysteine, and proportion of red blood cells and lower levels of ascorbic acid. Inflammation (C-reactive protein, glycoprotein acetylation), amino acids (isoleucine, leucine, tyrosine), and ketogenesis (3-hydroxybutyrate) were included in the cf-DNA level-related biomarker profiles in at least two of the cohorts.In conclusion, circulating cf-DNA level is different by sex, and related to health behaviour, health decline and metabolic processes common in health and disease. These results can inform future studies where epidemiological and biological pathways of cf-DNA are to be analysed in details, and for studies evaluating cf-DNA as a potential clinical marker.


Assuntos
Proteína C-Reativa , Ácidos Nucleicos Livres , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Envelhecimento/genética , Biomarcadores , Fenótipo , Inflamação , Comportamentos Relacionados com a Saúde , DNA
19.
Chem Biol Interact ; 357: 109877, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35276129

RESUMO

In vitro mechanistic research is mostly performed without taking into consideration the potential influence of cell culture media and/or their supplements and therefore, interactions between compounds of interest and medium ingredients may be overlooked. Isoproterenol (isoprenaline) is a synthetic catecholamine used as sympathomimetic drug that stimulates ß-adrenergic receptors and is widely used in biomedical research. Clinical studies have shown that isoproterenol is rapidly metabolized in the human body with a plasma half-life of about 2-5 min. However, despite its use in many in vitro and ex vivo studies, the stability of isoproterenol in cell culture media has not been characterized. Our results show a decrease of isoproterenol concentration in RPMI medium but high stability of the compound in TexMACS medium. The isoproterenol oxidation product isoprenochrome forms during treatment in both media. However, isoprenochrome formation is significantly lower in TexMACS medium. The effective level of isoproterenol and the formation of oxidation products might explain the discrepancies observed in isoproterenol-induced genotoxicity and cytotoxicity.


Assuntos
Dano ao DNA , DNA , DNA/metabolismo , Humanos , Isoproterenol/farmacologia , Oxirredução
20.
Sports (Basel) ; 10(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36355822

RESUMO

This study evaluated the reliability and sensitivity of a set of different common strength and power tests in a healthy adult population in a span of 9 weeks. Seventeen subjects (24.2 ± 2.2 years, 1.75 ± 0.10 m, 68.6 ± 14.2 kg, seven women) participated in the study. We tested countermovement jumps, reactive hops, and the maximal voluntary contraction (MVC) of handgrip and isometric knee extension. The tests were conducted in three separate sessions across a nine-week period, with one week between the first two sessions and eight weeks between the second and the third. Reliability and sensitivity statistics for each test were calculated for both the average of three trials and the best result during each session. The MVC of isometric knee extension and handgrip, as well as the countermovement jump test, demonstrated very high reliability and sensitivity over the nine-week period. The peak force of the reactive hops demonstrated high reliability but high sensitivity only for the average but not for the best result. The average contact time of reactive hops was neither a sensitive nor reliable measurement. In conclusion, isometric maximal knee extension and handgrip tests, as well as countermovement jumps and peak force of reactive hops, can be used as reliable and sensitive measurements of isometric and reactive strength and power over time periods of up to eight weeks. We recommend the use of the average results of three trials instead of the best performance value for longitudinal studies, as this procedure produces more consistent results and a lower measurement error.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa