Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.818
Filtrar
Mais filtros

Coleção SES
Intervalo de ano de publicação
1.
Cell ; 185(25): 4826-4840.e17, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36402135

RESUMO

Congenital Zika virus (ZIKV) infection results in neurodevelopmental deficits in up to 14% of infants born to ZIKV-infected mothers. Neutralizing antibodies are a critical component of protective immunity. Here, we demonstrate that plasma IgM contributes to ZIKV immunity in pregnancy, mediating neutralization up to 3 months post-symptoms. From a ZIKV-infected pregnant woman, we isolated a pentameric ZIKV-specific IgM (DH1017.IgM) that exhibited ultrapotent ZIKV neutralization dependent on the IgM isotype. DH1017.IgM targets an envelope dimer epitope within domain II. The epitope arrangement on the virion is compatible with concurrent engagement of all ten antigen-binding sites of DH1017.IgM, a solution not available to IgG. DH1017.IgM protected mice against viremia upon lethal ZIKV challenge more efficiently than when expressed as an IgG. Our findings identify a role for antibodies of the IgM isotype in protection against ZIKV and posit DH1017.IgM as a safe and effective candidate immunotherapeutic, particularly during pregnancy.


Assuntos
Imunoglobulina M , Gravidez , Infecção por Zika virus , Zika virus , Animais , Feminino , Camundongos , Gravidez/imunologia , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Testes de Neutralização , Infecção por Zika virus/imunologia , Imunoglobulina M/imunologia , Imunoglobulina M/isolamento & purificação
2.
Cell ; 165(2): 449-63, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26949186

RESUMO

Antibodies with ontogenies from VH1-2 or VH1-46-germline genes dominate the broadly neutralizing response against the CD4-binding site (CD4bs) on HIV-1. Here, we define with longitudinal sampling from time-of-infection the development of a VH1-46-derived antibody lineage that matured to neutralize 90% of HIV-1 isolates. Structures of lineage antibodies CH235 (week 41 from time-of-infection, 18% breadth), CH235.9 (week 152, 77%), and CH235.12 (week 323, 90%) demonstrated the maturing epitope to focus on the conformationally invariant portion of the CD4bs. Similarities between CH235 lineage and five unrelated CD4bs lineages in epitope focusing, length-of-time to develop breadth, and extraordinary level of somatic hypermutation suggested commonalities in maturation among all CD4bs antibodies. Fortunately, the required CH235-lineage hypermutation appeared substantially guided by the intrinsic mutability of the VH1-46 gene, which closely resembled VH1-2. We integrated our CH235-lineage findings with a second broadly neutralizing lineage and HIV-1 co-evolution to suggest a vaccination strategy for inducing both lineages.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Linfócitos B/imunologia , Anticorpos Anti-HIV/química , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
3.
Immunol Rev ; 311(1): 26-38, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35880587

RESUMO

The diploë region of skull has recently been discovered to act as a myeloid cell reservoir to the underlying meninges. The presence of ossified vascular channels traversing the inner skull of cortex provides a passageway for the cells to traffic from the niche, and CNS-derived antigens traveling through cerebrospinal fluid in a perivascular manner reaches the niche to signal myeloid cell egress. This review will highlight the recent findings establishing this burgeoning field along with the known role this niche plays in CNS aging and disease. It will further highlight the anatomical routes and physiological properties of the vascular structures these cells use for trafficking, spanning from skull to brain parenchyma.


Assuntos
Encéfalo , Células Mieloides , Envelhecimento , Encéfalo/irrigação sanguínea , Humanos
4.
PLoS Pathog ; 19(5): e1011152, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37126504

RESUMO

Hyphal growth is essential for host colonization during Aspergillus infection. The transcription factor ZfpA regulates A. fumigatus hyphal development including branching, septation, and cell wall composition. However, how ZfpA affects fungal growth and susceptibility to host immunity during infection has not been investigated. Here, we use the larval zebrafish-Aspergillus infection model and primary human neutrophils to probe how ZfpA affects A. fumigatus pathogenesis and response to antifungal drugs in vivo. ZfpA deletion promotes fungal clearance and attenuates virulence in wild-type hosts and this virulence defect is abrogated in neutrophil-deficient zebrafish. ZfpA deletion also increases susceptibility to human neutrophils ex vivo while overexpression impairs fungal killing. Overexpression of ZfpA confers protection against the antifungal caspofungin by increasing chitin synthesis during hyphal development, while ZfpA deletion reduces cell wall chitin and increases caspofungin susceptibility in neutrophil-deficient zebrafish. These findings suggest a protective role for ZfpA activity in resistance to the innate immune response and antifungal treatment during A. fumigatus infection.


Assuntos
Aspergilose , Aspergillus fumigatus , Animais , Humanos , Antifúngicos/farmacologia , Caspofungina/farmacologia , Neutrófilos , Peixe-Zebra/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Aspergilose/microbiologia , Regulação Fúngica da Expressão Gênica , Quitina
5.
PLoS Pathog ; 19(3): e1011282, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36976812

RESUMO

In the 2016 Zika virus (ZIKV) pandemic, a previously unrecognized risk of birth defects surfaced in babies whose mothers were infected with Asian-lineage ZIKV during pregnancy. Less is known about the impacts of gestational African-lineage ZIKV infections. Given high human immunodeficiency virus (HIV) burdens in regions where African-lineage ZIKV circulates, we evaluated whether pregnant rhesus macaques infected with simian immunodeficiency virus (SIV) have a higher risk of African-lineage ZIKV-associated birth defects. Remarkably, in both SIV+ and SIV- animals, ZIKV infection early in the first trimester caused a high incidence (78%) of spontaneous pregnancy loss within 20 days. These findings suggest a significant risk for early pregnancy loss associated with African-lineage ZIKV infection and provide the first consistent ZIKV-associated phenotype in macaques for testing medical countermeasures.


Assuntos
Aborto Espontâneo , Complicações Infecciosas na Gravidez , Vírus da Imunodeficiência Símia , Infecção por Zika virus , Zika virus , Gravidez , Feminino , Animais , Humanos , Zika virus/genética , Macaca mulatta , Primeiro Trimestre da Gravidez
6.
Semin Cell Dev Biol ; 131: 146-159, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35659163

RESUMO

Active fluid transport across epithelial monolayers is emerging as a major driving force of tissue morphogenesis in a variety of healthy and diseased systems, as well as during embryonic development. Cells use directional transport of ions and osmotic gradients to drive fluid flow across the cell surface, in the process also building up fluid pressure. The basic physics of this process is described by the osmotic engine model, which also underlies actin-independent cell migration. Recently, the trans-epithelial fluid flux and the hydraulic pressure gradient have been explicitly measured for a variety of cellular and tissue model systems across various species. For the kidney, it was shown that tubular epithelial cells behave as active mechanical fluid pumps: the trans-epithelial fluid flux depends on the hydraulic pressure difference across the epithelial layer. When a stall pressure is reached, the fluid flux vanishes. Hydraulic forces generated from active fluid pumping are important in tissue morphogenesis and homeostasis, and could also underlie multiple morphogenic events seen in other developmental contexts. In this review, we highlight findings that examined the role of trans-epithelial fluid flux and hydraulic pressure gradient in driving tissue-scale morphogenesis. We also review organ pathophysiology due to impaired fluid pumping and the loss of hydraulic pressure sensing at the cellular scale. Finally, we draw an analogy between cellular fluidic pumps and a connected network of water pumps in a city. The dynamics of fluid transport in an active and adaptive network is determined globally at the systemic level, and transport in such a network is best when each pump is operating at its optimal efficiency.


Assuntos
Actinas , Actinas/metabolismo , Transporte Biológico , Morfogênese , Osmose
7.
J Biol Chem ; 299(4): 103057, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822331

RESUMO

CLEC16A is an E3 ubiquitin ligase that regulates mitochondrial quality control through mitophagy and is associated with over 20 human diseases. CLEC16A forms a complex with another E3 ligase, RNF41, and a ubiquitin-specific peptidase, USP8; however, regions that regulate CLEC16A activity or the assembly of the tripartite mitophagy regulatory complex are unknown. Here, we report that CLEC16A contains an internal intrinsically disordered protein region (IDPR) that is crucial for CLEC16A function and turnover. IDPRs lack a fixed secondary structure and possess emerging yet still equivocal roles in protein stability, interactions, and enzymatic activity. We find that the internal IDPR of CLEC16A is crucial for its degradation. CLEC16A turnover was promoted by RNF41, which binds and acts upon the internal IDPR to destabilize CLEC16A. Loss of this internal IDPR also destabilized the ubiquitin-dependent tripartite CLEC16A-RNF41-USP8 complex. Finally, the presence of an internal IDPR within CLEC16A was confirmed using NMR and CD spectroscopy. Together, our studies reveal that an IDPR is essential to control the reciprocal regulatory balance between CLEC16A and RNF41, which could be targeted to improve mitochondrial health in disease.


Assuntos
Proteínas Intrinsicamente Desordenadas , Mitofagia , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Lectinas Tipo C/metabolismo
8.
Mol Microbiol ; 120(2): 258-275, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37357823

RESUMO

Type VIIb secretion systems (T7SSb) in Gram-positive bacteria facilitate physiology, interbacterial competition, and/or virulence via EssC ATPase-driven secretion of small ɑ-helical proteins and toxins. Recently, we characterized T7SSb in group B Streptococcus (GBS), a leading cause of infection in newborns and immunocompromised adults. GBS T7SS comprises four subtypes based on variation in the C-terminus of EssC and the repertoire of downstream effectors; however, the intraspecies diversity of GBS T7SS and impact on GBS-host interactions remains unknown. Bioinformatic analysis indicates that GBS T7SS loci encode subtype-specific putative effectors, which have low interspecies and inter-subtype homology but contain similar domains/motifs and therefore may serve similar functions. We further identify orphaned GBS WXG100 proteins. Functionally, we show that GBS T7SS subtype I and III strains secrete EsxA in vitro and that in subtype I strain CJB111, esxA1 appears to be differentially transcribed from the T7SS operon. Furthermore, we observe subtype-specific effects of GBS T7SS on host colonization, as CJB111 subtype I but not CNCTC 10/84 subtype III T7SS promotes GBS vaginal colonization. Finally, we observe that T7SS subtypes I and II are the predominant subtypes in clinical GBS isolates. This study highlights the potential impact of T7SS heterogeneity on host-GBS interactions.


Assuntos
Infecções Estreptocócicas , Sistemas de Secreção Tipo VII , Recém-Nascido , Feminino , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo VII/genética , Virulência , Óperon/genética , Genitália Feminina/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Vagina/metabolismo , Vagina/microbiologia
9.
Anal Chem ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38341805

RESUMO

RNA-protein interactions are essential to RNA function throughout biology. Identifying the protein interactions associated with a specific RNA, however, is currently hindered by the need for RNA labeling or costly tiling-based approaches. Conventional strategies, which commonly rely on affinity pull-down approaches, are also skewed to the detection of high affinity interactions and frequently miss weaker interactions that may be biologically important. Reported here is the first adaptation of stability-based mass spectrometry methods for the global analysis of RNA-protein interactions. The stability of proteins from rates of oxidation (SPROX) and thermal protein profiling (TPP) methods are used to identify the protein targets of three RNA ligands, the MALAT1 triple helix (TH), a viral stem loop (SL), and an unstructured RNA (PolyU), in LNCaP nuclear lysate. The 315 protein hits with RNA-induced conformational and stability changes detected by TPP and/or SPROX were enriched in previously annotated RNA-binding proteins and included new proteins for hypothesis generation. Also demonstrated are the orthogonality of the SPROX and TPP approaches and the utility of the domain-specific information available with SPROX. This work establishes a novel platform for the global discovery and interrogation of RNA-protein interactions that is generalizable to numerous biological contexts and RNA targets.

10.
Metab Eng ; 81: 88-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000549

RESUMO

Pseudomonas putida KT2440 is a robust, aromatic catabolic bacterium that has been widely engineered to convert bio-based and waste-based feedstocks to target products. Towards industrial domestication of P. putida KT2440, rational genome reduction has been previously conducted, resulting in P. putida strain EM42, which exhibited characteristics that could be advantageous for production strains. Here, we compared P. putida KT2440- and EM42-derived strains for cis,cis-muconic acid production from an aromatic compound, p-coumarate, and in separate strains, from glucose. To our surprise, the EM42-derived strains did not outperform the KT2440-derived strains in muconate production from either substrate. In bioreactor cultivations, KT2440- and EM42-derived strains produced muconate from p-coumarate at titers of 45 g/L and 37 g/L, respectively, and from glucose at 20 g/L and 13 g/L, respectively. To provide additional insights about the differences in the parent strains, we analyzed growth profiles of KT2440 and EM42 on aromatic compounds as the sole carbon and energy sources. In general, the EM42 strain exhibited reduced growth rates but shorter growth lags than KT2440. We also observed that EM42-derived strains resulted in higher growth rates on glucose compared to KT2440-derived strains, but only at the lowest glucose concentrations tested. Transcriptomics revealed that genome reduction in EM42 had global effects on transcript levels and showed that the EM42-derived strains that produce muconate from glucose exhibit reduced modulation of gene expression in response to changes in glucose concentrations. Overall, our results highlight that additional studies are warranted to understand the effects of genome reduction on microbial metabolism and physiology, especially when intended for use in production strains.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Glucose/metabolismo , Reatores Biológicos
11.
Clin Transplant ; 38(2): e15262, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38369849

RESUMO

INTRODUCTION: The nature, intensity, and progression of acute pain after bilateral orthotopic lung transplantation (BOLT) performed via a clamshell incision has not been well investigated. We aimed to describe acute pain after clamshell incisions using pain trajectories for the study cohort, in addition to stratifying patients into separate pain trajectory groups and investigating their association with donor and recipient perioperative variables. METHODS: After obtaining IRB approval, we retrospectively included all patients ≥18 years old who underwent primary BOLT via clamshell incision at a single center between January 1, 2017, and June 30, 2022. We modeled the overall pain trajectory using pain scores collected over the first seven postoperative days and identified separate pain trajectory classes via latent class analysis. RESULTS: Three hundred one adult patients were included in the final analysis. Three separate pain trajectory groups were identified, with most patients (72.8%) belonging to a well-controlled, stable pain trajectory. Uncontrolled pain was either observed in the early postoperative period (10%), or in the late postoperative period (17.3%). Late postoperative peaking trajectory patients were younger (p = .008), and sicker with a higher lung allocation score (p = .005), receiving preoperative mechanical ventilation (p < .001), or VV-ECMO support (p < .001). CONCLUSION: Despite the extensive nature of a clamshell incision, most pain trajectories in BOLT patients had a well-controlled stable pain profile. The benign nature of pain profiles in our patient population may be attributed to the routine institutional practice of early thoracic epidural analgesia for BOLT patients unless contraindicated.


Assuntos
Dor Aguda , Transplante de Pulmão , Adulto , Humanos , Adolescente , Estudos Retrospectivos , Toracotomia , Transplante de Pulmão/efeitos adversos , Manejo da Dor , Dor Pós-Operatória/etiologia
12.
J Surg Oncol ; 129(5): 885-892, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38196111

RESUMO

BACKGROUND AND OBJECTIVES: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor response to systemic therapies, including immunotherapy. Given the immunotherapeutic potential of natural killer (NK) cells, we evaluated intratumoral NK cell infiltrates along with cytotoxic T cells in PDAC to determine their association with patient outcomes. METHODS: We analyzed tumors from 93 PDAC patients treated from 2012 to 2020. Predictor variables included tumor-infiltrating lymphocytes (TILs), T-cell markers (CD3, CD8, CD45RO), NK marker (NKp46), and NK inhibitory marker (major histocompatibility complex class I [MHC-I]) by immunohistochemistry. Primary outcome variables were recurrence-free survival (RFS) and overall survival (OS). RESULTS: Mean TILs, CD3, and NKp46 scores were 1.3 ± 0.63, 20.6 ± 17.5, and 3.1 ± 3.9, respectively. Higher expression of CD3 and CD8 was associated with higher OS, whereas NK cell infiltration was not associated with either RFS or OS. There was a tight positive correlation between MHC-I expression and all T-cell markers, but not with NKp46. CONCLUSIONS: Overall NK cell infiltrates were low in PDAC and did not predict clinical outcomes, whereas T-cell infiltrates did. Further characterization of the immune infiltrate in PDAC, including inhibitory signals and suppressive cell types, may yield better biomarkers of prognosis and immune targeting in this refractory disease.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Linfócitos do Interstício Tumoral , Células Matadoras Naturais , Prognóstico , Linfócitos T CD8-Positivos
13.
J Immunol ; 209(3): 548-558, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35851538

RESUMO

Pseudomonas aeruginosa is an important cause of dermal, pulmonary, and ocular disease. Our studies have focused on P. aeruginosa infections of the cornea (keratitis) as a major cause of blinding microbial infections. The infection leads to an influx of innate immune cells, with neutrophils making up to 90% of recruited cells during early stages. We previously reported that the proinflammatory cytokines IL-1α and IL-1ß were elevated during infection. Compared with wild-type (WT), infected Il1b-/- mice developed more severe corneal disease that is associated with impaired bacterial killing as a result of defective neutrophil recruitment. We also reported that neutrophils are an important source of IL-1α and IL-1ß, which peaked at 24 h postinfection. To examine the role of IL-1α compared with IL-1ß in P. aeruginosa keratitis, we inoculated corneas of C57BL/6 (WT), Il1a-/-, Il1b-/-, and Il1a-/-Il1b-/- (double-knockout) mice with 5 × 104 ExoS-expressing P. aeruginosa. Il1b-/- and double-knockout mice have significantly higher bacterial burden that was consistent with delayed neutrophil and monocyte recruitment to the corneas. Surprisingly, Il1a-/- mice had the opposite phenotype with enhanced bacteria clearance compared with WT mice. Although there were no significant differences in neutrophil recruitment, Il1a-/- neutrophils displayed a more proinflammatory transcriptomic profile compared to WT with elevations in C1q expression that likely caused the phenotypic differences observed. To our knowledge, our findings identify a novel, non-redundant role for IL-1α in impairing bacterial clearance.

14.
Pediatr Transplant ; 28(4): e14788, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38766977

RESUMO

BACKGROUND: Partial heart transplantation delivers growing heart valve implants by transplanting the part of the heart containing the necessary heart valve only. In contrast to heart transplantation, partial heart transplantation spares the native ventricles. This has important implications for partial heart transplant biology, including the allowable ischemia time, optimal graft preservation, primary graft dysfunction, immune rejection, and optimal immunosuppression. AIMS: Exploration of partial heart transplant biology will depend on suitable animal models. Here we review our experience with partial heart transplantation in rodents, piglets, and non-human primates. MATERIALS & METHODS: This review is based on our experience with partial heart transplantation using over 100 rodents, over 50 piglets and one baboon. RESULTS: Suitable animal models for partial heart transplantation include rodent heterotopic partial heart transplantation, piglet orthotopic partial heart transplantation, and non-human primate partial heart xenotransplantation. DISCUSSION: Rodent models are relatively cheap and offer extensive availability of research tools. However, rodent open-heart surgery is technically not feasible. This limits rodents to heterotopic partial heart transplant models. Piglets are comparable in size to children. This allows for open-heart surgery using clinical grade equipment for orthoptic partial heart transplantation. Piglets also grow rapidly, which is useful for studying partial heart transplant growth. Finally, nonhuman primates are immunologically most closely related to humans. Therefore, nonhuman primates are most suitable for studying partial heart transplant immunobiology and xenotransplantation. CONCLUSIONS: Animal research is a privilege that is contingent on utilitarian ethics and the 3R principles of replacement, reduction and refinement. This privilege allows the research community to seek fundamental knowledge about partial heart transplantation, and to apply this knowledge to enhance the health of children who require partial heart transplants.


Assuntos
Transplante de Coração , Modelos Animais , Transplante Heterólogo , Transplante de Coração/métodos , Animais , Suínos , Papio , Humanos , Rejeição de Enxerto/imunologia , Transplante Heterotópico , Ratos , Modelos Animais de Doenças , Roedores
15.
Philos Trans A Math Phys Eng Sci ; 382(2270): 20230155, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38403058

RESUMO

This paper investigates the potential for reducing the complexity of AI and Law and empirical legal studies projects through a novel annotation methodology that relies on GPT Family Models to assist human annotators. Improving the speed, cost and quality of annotation could greatly benefit such projects. In modelling types of legal claims, researchers in the fields of empirical legal studies and AI and Law have long relied on manually annotating factors in case texts. To demonstrate our methodology, we employ cases and factors regarding whether a police officer has constitutional authority to detain a motorist on the basis of the officer's suspicion that the motorist is trafficking drugs. Our results demonstrate how recent advances in text analytics can reduce the burden of identifying factors in large numbers of cases and improve machine learning models' predictions of case outcomes. This article is part of the theme issue 'A complexity science approach to law and governance'.

16.
Nature ; 558(7709): 307-312, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29849141

RESUMO

Cancer immunotherapy based on genetically redirecting T cells has been used successfully to treat B cell malignancies1-3. In this strategy, the T cell genome is modified by integration of viral vectors or transposons encoding chimaeric antigen receptors (CARs) that direct tumour cell killing. However, this approach is often limited by the extent of expansion and persistence of CAR T cells4,5. Here we report mechanistic insights from studies of a patient with chronic lymphocytic leukaemia treated with CAR T cells targeting the CD19 protein. Following infusion of CAR T cells, anti-tumour activity was evident in the peripheral blood, lymph nodes and bone marrow; this activity was accompanied by complete remission. Unexpectedly, at the peak of the response, 94% of CAR T cells originated from a single clone in which lentiviral vector-mediated insertion of the CAR transgene disrupted the methylcytosine dioxygenase TET2 gene. Further analysis revealed a hypomorphic mutation in this patient's second TET2 allele. TET2-disrupted CAR T cells exhibited an epigenetic profile consistent with altered T cell differentiation and, at the peak of expansion, displayed a central memory phenotype. Experimental knockdown of TET2 recapitulated the potency-enhancing effect of TET2 dysfunction in this patient's CAR T cells. These findings suggest that the progeny of a single CAR T cell induced leukaemia remission and that TET2 modification may be useful for improving immunotherapies.


Assuntos
5-Metilcitosina/metabolismo , Antígenos CD19/imunologia , Dioxigenases/genética , Imunoterapia/métodos , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/terapia , Linfócitos T/imunologia , Linfócitos T/transplante , Transferência Adotiva , Idoso , Alelos , Diferenciação Celular , Ensaios Clínicos como Assunto , Células Clonais/citologia , Células Clonais/imunologia , Dioxigenases/metabolismo , Epigênese Genética , Células HEK293 , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Mutação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Transgenes
17.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33859040

RESUMO

Mitochondrial ATP production is a well-known regulator of neuronal excitability. The reciprocal influence of plasma-membrane potential on ATP production, however, remains poorly understood. Here, we describe a mechanism by which depolarized neurons elevate the somatic ATP/ADP ratio in Drosophila glutamatergic neurons. We show that depolarization increased phospholipase-Cß (PLC-ß) activity by promoting the association of the enzyme with its phosphoinositide substrate. Augmented PLC-ß activity led to greater release of endoplasmic reticulum Ca2+ via the inositol trisphosphate receptor (IP3R), increased mitochondrial Ca2+ uptake, and promoted ATP synthesis. Perturbations that decoupled membrane potential from this mode of ATP synthesis led to untrammeled PLC-ß-IP3R activation and a dramatic shortening of Drosophila lifespan. Upon investigating the underlying mechanisms, we found that increased sequestration of Ca2+ into endolysosomes was an intermediary in the regulation of lifespan by IP3Rs. Manipulations that either lowered PLC-ß/IP3R abundance or attenuated endolysosomal Ca2+ overload restored animal longevity. Collectively, our findings demonstrate that depolarization-dependent regulation of PLC-ß-IP3R signaling is required for modulation of the ATP/ADP ratio in healthy glutamatergic neurons, whereas hyperactivation of this axis in chronically depolarized glutamatergic neurons shortens animal lifespan by promoting endolysosomal Ca2+ overload.


Assuntos
Sinalização do Cálcio/fisiologia , Longevidade/fisiologia , Neurônios/metabolismo , Animais , Cálcio/metabolismo , Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios/metabolismo , Ácido Glutâmico/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Potenciais da Membrana , Mitocôndrias/metabolismo , Neurônios/fisiologia
18.
Subst Use Misuse ; 59(2): 208-217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37846065

RESUMO

OBJECTIVE: College students represent a large portion of the population, and report high rates of cannabis use and related negative outcomes, including interpersonal problems, risky behaviors, or physical dependency. The contexts in which students use cannabis (e.g., at a party, when feeling down or depressed, after a fight with a loved one) likely affect their risk of experiencing consequences. We aimed to discern profiles of cannabis use contexts and compare profiles on use frequency, consequences, and the use of cannabis protective behavioral strategies (PBS). METHOD: College students were surveyed regarding their cannabis use contexts, frequency, consequences, and PBS use (n = 265; female = 72.8%). We used Latent Profile Analysis to identify patterns of cannabis use contexts and auxiliary testing to compare profiles on use frequency, consequences, and PBS use. RESULTS: Our examination revealed three latent profiles of cannabis use. The Social Use Profile was associated with use in predominantly social/uplifting contexts. The Physical & Emotional Pain Profile was also associated with use in these contexts but was defined by additional use in response to pain. The All Contexts Profile was associated with frequent use in all contexts, including those that were least endorsed by the other profiles. Profiles differed in cannabis use frequency, PBS use, and the number of consequences experienced, such that profiles were more likely to be associated with more frequent cannabis use, higher risk of experiencing use-consequences, and using fewer PBS as the number of use contexts increased across the profiles. CONCLUSIONS: The contexts in which people use cannabis are associated with cannabis risk and protection. Prevention and intervention efforts may benefit from considering contexts of cannabis use.


Assuntos
Cannabis , Transtornos Relacionados ao Uso de Substâncias , Humanos , Feminino , Emoções , Meio Social , Dor , Universidades
19.
Sci Technol Adv Mater ; 25(1): 2351791, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817250

RESUMO

Targeted nanoparticles offer potential to selectively deliver therapeutics to cells; however, their subcellular fate following endocytosis must be understood to properly design mechanisms of drug release. Here we describe a nanoparticle platform and associated cell-based assay to observe lysosome trafficking of targeted nanoparticles in live cells. The nanoparticle platform utilizes two fluorescent dyes loaded onto PEG-poly(glutamic acid) and PEG-poly(Lysine) block co-polymers that also comprise azide reactive handles on PEG termini to attach antibody-based targeting ligands. Fluorophores were selected to be pH-sensitive (pHrodo Red) or pH-insensitive (Alexafluor 488) to report when nanoparticles enter low pH lysosomes. Dye-labelled block co-polymers were further assembled into polyion complex micelle nanoparticles and crosslinked through amide bond formation to form stable nano-scaffolds for ligand attachment. Cell binding and lysosome trafficking was determined in live cells by fluorescence imaging in 96-well plates and quantification of red- and green-fluorescence signals over time. The platform and assay was validated for selection of optimal antibody-derived targeting ligands directed towards CD22 for nanoparticle delivery. Kinetic analysis of uptake and lysosome trafficking indicated differences between ligand types and the ligand with the highest lysosome trafficking efficiency translated into effective DNA delivery with nanoparticles bearing the optimal ligand.


The ability of this pH-sensitive reporter platform to rapidly screen ligands in nanoparticle format will enable identification and production of targeted NPs with desired lysosome trafficking properties.

20.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542325

RESUMO

The cancer stem cell (CSC) hypothesis postulates that heterogeneous human cancers harbor a population of stem-like cells which are resistant to cytotoxic therapies, thus providing a reservoir of relapse following conventional therapies like chemotherapy and radiation (RT). CSCs have been observed in multiple human cancers, and their presence has been correlated with worse clinical outcomes. Here, we sought to evaluate the impact of drug dosing of the multi-tyrosine kinase inhibitor, sorafenib, on CSC and non-CSCs in soft tissue sarcoma (STS) models, hypothesizing differential effects of sorafenib based on dose and target cell population. In vitro, human cancer cell lines and primary STS from surgical specimens were exposed to escalating doses of sorafenib to determine cell viability and expression of CSC marker aldehyde dehydrogenase (ALDH). In vivo, ALDHbright CSCs were isolated, exposed to sorafenib, and xenograft growth and survival analyses were performed. We observed that sarcoma CSCs appear to paradoxically respond to the tyrosine kinase inhibitor sorafenib at low doses with increased proliferation and stem-like function of CSCs, whereas anti-viability effects dominated at higher doses. Importantly, STS patients receiving neoadjuvant sorafenib and RT on a clinical trial (NCT00864032) showed increased CSCs post therapy, and higher ALDH scores post therapy were associated with worse metastasis-free survival. These data suggest that low-dose sorafenib may promote the CSC phenotype in STS with clinically significant effects, including increased tumor growth and higher rates of metastasis formation in sarcoma patients.


Assuntos
Sarcoma , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Sorafenibe/metabolismo , Aldeído Desidrogenase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/metabolismo , Sarcoma/patologia , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa