Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 33(42): 16818-27, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24133282

RESUMO

A majority of neurons in the monkey primary visual cortex (V1) are tuned to stimulus orientations. Preferred orientations and tuning strengths vary among V1 neurons. The preferred orientation of neurons gradually changes across the cortex with occasional failures of this organization. How V1 neurons are arranged by the strength of orientation tuning and whether neuronal arrangement for tuning strength relates to orientation preference maps remains controversial. In this study, we performed in vivo two-photon calcium imaging in macaque V1 to examine the local spatial organization of orientation tuning at the level of single cells. We recorded fluorescence signals from individual neurons loaded with a calcium-sensitive dye in layer 2 and the uppermost tier of layer 3. The strength of orientation tuning was shared by nearby neurons, and changed across the cortex. The neurons with similar tuning strength were distributed across at least the entire thickness of layer 2. The tuning strength was weaker in regions where neurons exhibited heterogeneous preferred orientations, as compared with regions where neurons shared similar orientation preferences. Nearby direction-selective neurons often shared their preferred directions, although only a few neurons were direction selective in the layers examined. Thus, the orientation tuning strength of V1 neurons is partially predictable from the local structure of orientation map. The weaker orientation tuning we found in regions with heterogeneous orientation preferences suggests that orientation-independent interactions among local populations of V1 neurons play a critical role in determining their orientation tuning.


Assuntos
Neurônios/fisiologia , Orientação/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Atenção/fisiologia , Mapeamento Encefálico , Cálcio/metabolismo , Feminino , Macaca fascicularis , Masculino , Estimulação Luminosa
2.
J Neurophysiol ; 111(12): 2589-602, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24671542

RESUMO

Detailed knowledge of neuronal circuitry is necessary for understanding the mechanisms underlying information processing in the brain. We investigated the organization of horizontal functional interactions in the inferior temporal cortex of macaque monkeys, which plays important roles in visual object recognition. Neuronal activity was recorded from the inferior temporal cortex using an array of eight tetrodes, with spatial separation between paired neurons up to 1.4 mm. We evaluated functional interactions on a time scale of milliseconds using cross-correlation analysis of neuronal activity of the paired neurons. Visual response properties of neurons were evaluated using responses to a set of 100 visual stimuli. Adjacent neuron pairs tended to show strong functional interactions compared with more distant neuron pairs, and neurons with similar stimulus preferences tended to show stronger functional interactions than neurons with different stimulus preferences. Thus horizontal functional interactions in the inferior temporal cortex appear to be organized according to both cortical distances and similarity in stimulus preference between neurons. Furthermore, the relationship between strength of functional interactions and similarity in stimulus preference observed in distant neuron pairs was more prominent than in adjacent pairs. The results suggest that functional circuitry is specifically organized, depending on the horizontal distances between neurons. Such specificity endows each circuit with unique functions.


Assuntos
Neurônios/fisiologia , Lobo Temporal/fisiologia , Percepção Visual/fisiologia , Potenciais de Ação , Animais , Macaca , Macaca fascicularis , Masculino , Microeletrodos , Estimulação Luminosa
3.
Neurosci Res ; 156: 279-292, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32243900

RESUMO

In this review, we describe recent experimental observations and model simulations in the research subject of brain-machine interface (BMI). Studies of BMIs have applied decoding models to extract functional characteristics of the recorded neurons, and some of these have more focused on adaptation based on neural operant conditioning. Under a closed loop feedback with the environment through BMIs, neuronal activities are forced to interact directly with the environment. These studies have shown that the neuron ensembles self-reorganized their activity patterns and completed a transition to adaptive state within a short time scale. Based on these observations, we discuss how the brain could identify the target neurons directly interacting with the environment and determine in which direction the activities of those neurons should be changed for adaptation. For adaptation over a short time scale, the changes of neuron ensemble activities seem to be restricted by the intrinsic correlation structure of the neuronal network (intrinsic manifold). On the other hand, for adaptation over a long time scale, modifications to the synaptic connections enable the neuronal network to generate a novel activation pattern required by BMI (extension of the intrinsic manifold). Understanding of the intrinsic constraints in adaptive changes of neuronal activities will provide the basic principles of learning mechanisms in the brain and methodological clues for better performance in engineering and clinical applications of BMI.


Assuntos
Interfaces Cérebro-Computador , Córtex Motor , Condicionamento Operante , Aprendizagem , Neurônios
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa