Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Mol Pharm ; 21(3): 1424-1435, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38324797

RESUMO

In this study, we investigated the mechanism of curcumin (CUR) release from poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) nanoparticles (NPs) by evaluating the temperature-dependent CUR release. NPs were prepared by the nanoprecipitation method using various PLGA/PLA polymers with different lactic:glycolic ratios (L:G ratios) and molecular weights. Increasing the polymer molecular weight resulted in a decrease in the particle size of NPs. The wet glass transition temperature (Tg) of PLGA/PLA NPs was lower than the intrinsic polymer Tg, which can be derived from the water absorption and nanosizing of the polymer. The reduction in Tg was more significant for the PLGA/PLA NPs with lower polymer L:G ratios and lower polymer molecular weight. The greater decrease of Tg in the lower polymer L:G ratios was possibly caused by the higher water absorption due to the more hydrophilic nature of the glycolic acid segment than that of the lactic acid segment. The efficient water absorption in PLGA/PLA NPs with lower molecular weight could cause a significant reduction of Tg as it has lower hydrophobicity. CUR release tests from the PLGA/PLA NPs exhibited enhanced CUR release with increasing temperatures, irrespective of polymer species. By fitting the CUR release profiles into mathematical models, the CUR release process was well described by an initial burst release followed by a diffusion-controlled release. The wet Tg and particle size of the PLGA/PLA NPs affected the amount and temperature dependence of the initial burst release of CUR. Above the wet Tg of NPs, the initial burst release of CUR increased sharply. Smaller particle sizes of PLGA/PLA NPs led to a higher fraction of initial CUR burst release, which was more pronounced above the wet Tg of NPs. The wet Tg and particle sizes of the PLGA/PLA NPs also influenced the diffusion-controlled CUR release. The diffusion rate of CUR in the NPs increased as the wet Tg values of the NPs decreased. The diffusion path length of CUR was affected by the particle size, with larger particle size resulting in a prolonged diffusion-controlled release of CUR. This study highlighted that for the formulation development of PLGA/PLA NPs, suitable PLGA/PLA polymers should be selected considering the physicochemical properties of PLGA/PLA NPs and their correlation with the release behavior of encapsulated drugs at the application temperature.


Assuntos
Curcumina , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Curcumina/química , Ácido Poliglicólico/química , Temperatura , Preparações de Ação Retardada , Glicóis , Poliésteres , Tamanho da Partícula , Nanopartículas/química , Água
2.
Mol Pharm ; 21(3): 1501-1514, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38363209

RESUMO

Encapsulation of active pharmaceutical ingredients (APIs) in confined spaces has been extensively explored as it dramatically alters the molecular dynamics and physical properties of the API. Herein, we explored the effect of encapsulation on the molecular dynamics and physical stability of a guest drug, salicylic acid (SA), confined in the intermolecular spaces of γ-cyclodextrin (γ-CD) and poly(ethylene glycol) (PEG)-based polypseudorotaxane (PPRX) structure. The sublimation tendency of SA encapsulated in three polymorphic forms of the γ-CD/PEG-based PPRX complex, monoclinic columnar (MC), hexagonal columnar (HC), and tetragonal columnar (TC), was investigated. The SA sublimation rate was decreased by 3.0-6.6-fold and varied in the order of MC form > HC form > TC form complex. The 13C and 1H magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectra and 13C spin-lattice relaxation time (T1) indicated that the encapsulated SA molecules existed as the monomeric form, and its molecular mobility increased in the order of MC form > HC form > TC form complex. In the complexes, a rapid chemical exchange between two dynamic states of SA (free and bound) was suggested, with varying adsorption/desorption rates accounting for its distinct molecular mobility. This adsorption/desorption process was influenced by proton exchange at the interaction site and interaction strength of SA in the complexes, as evidenced by 1H MAS spectra and temperature dependency of the 13C carbonyl chemical shift. A positive correlation between the molecular mobility of SA and its sublimation rate was established. Moreover, the molecular mobility of γ-CD and PEG in the complexes coincided with that of SA, which can be explained by fast guest-driven dynamics. This is the first report on the stability improvement of an API through complexation in polymorphic supramolecular host structures. The relationship between the molecular dynamics and physical properties of encapsulated API will aid in the rational design of drug delivery systems.


Assuntos
Ciclodextrinas , Simulação de Dinâmica Molecular , Poloxâmero , Rotaxanos , Preparações Farmacêuticas , Ciclodextrinas/química , Espectroscopia de Ressonância Magnética , Ácido Salicílico/química
3.
Mol Pharm ; 21(4): 1745-1755, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38501717

RESUMO

Drug-rich droplets formed through liquid-liquid phase separation (LLPS) have the potential to enhance the oral absorption of drugs. This can be attributed to the diffusion of these droplets into the unstirred water layer (UWL) of the gastrointestinal tract and their reservoir effects on maintaining drug supersaturation. However, a quantitative understanding of the effect of drug-rich droplets on intestinal drug absorption is still lacking. In this study, the enhancement of intestinal drug absorption through the formation of drug-rich droplets was quantitatively evaluated on a mechanistic basis. To obtain fenofibrate (FFB)-rich droplets, an amorphous solid dispersion (ASD) of FFB/hypromellose (HPMC) was dispersed in an aqueous medium. Physicochemical characterization confirmed the presence of nanosized FFB-rich droplets in the supercooled liquid state within the FFB/HPMC ASD dispersion. An in situ single-pass intestinal perfusion (SPIP) assay in rats demonstrated that increased quantities of FFB-rich nanodroplets enhanced the intestinal absorption of FFB. The effective diffusion of FFB-rich nanodroplets through UWL would partially contribute to the improved FFB absorption. Additionally, confocal laser scanning microscopy (CLSM) of cross sections of the rat intestine after the administration of fluorescently labeled FFB-rich nanodroplets showed that these nanodroplets were directly taken up by small intestinal epithelial cells. Therefore, the direct uptake of drug-rich nanodroplets by the small intestine is a potential mechanism for improving FFB absorption in the intestine. To quantitatively evaluate the impact of FFB-rich droplets on the FFB absorption enhancement, we determined the apparent permeabilities of the FFB-rich nanodroplets and dissolved FFB based on the SPIP results. The apparent permeability of the FFB-rich nanodroplets was 110-130 times lower than that of dissolved FFB. However, when the FFB-rich nanodroplet concentration was several hundred times higher than that of dissolved FFB, the FFB-rich nanodroplets contributed significantly to FFB absorption improvement. The present study highlights that drug-rich nanodroplets play a direct role in enhancing drug absorption in the gastrointestinal tract, indicating their potential for further improvement of oral absorption from ASD formulations.


Assuntos
Fenofibrato , Separação de Fases , Ratos , Animais , Preparações Farmacêuticas , Fenofibrato/química , Absorção Intestinal , Intestinos , Solubilidade
4.
Langmuir ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012334

RESUMO

Poloxamer hydrogel possesses thermosensitive sol-gel transition characteristics and is widely used as a drug-controlled-release carrier for topical or injectable formulations. In this study, the effect of loading of a drug, acetaminophen (ACE), on the physical and structural properties of poloxamer 407 (P407) micelles and hydrogels was investigated. Differential scanning calorimetry measurements revealed that ACE reduced the critical micelle temperature and enthalpy of micellization of P407 solutions. The P407 micellization was promoted by ACE incorporation. Rheometry showed that ACE increased the sol-gel transition temperature and reduced the gel strength of P407. In situ small-angle X-ray scattering (SAXS) using synchrotron radiation revealed that ACE altered the structure of P407 micelles and their packing in the P407 gels. As ACE concentration increased, the P407 micelle packing changed from a face-centered cubic phase to a body-centered cubic phase. Furthermore, ACE disordered the micelle packing structure and induced the formation of an amorphous phase. Structural analysis of the P407 micelle packing indicated that ACE reduced the aggregation number (Nagg) of P407 micelles in the gels. The SAXS study for diluted P407 solutions revealed that ACE reduced the P407 micelle size and its uniformity. The structural changes in P407 micelles by ACE loading (e.g., the reduction of Nagg, size, and size uniformity) would alter the micelle packing structure. It was found that these structural changes of micelle packing, especially the formation of an amorphous phase, could destabilize the P407 gel. As a result, the physical properties of P407 gels, such as gelation temperature and gel strength, were changed. This relationship between the structure and physical property of drug-loaded P407 gels was well-explained by correlating the micelle and gel structures. The mechanistic understanding of the change in the physical properties of P407 gels by drug loading is essential for the effective development of poloxamer gel formulations.

5.
Mol Pharm ; 20(4): 1872-1883, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36939568

RESUMO

This study utilized temperature-variable nuclear magnetic resonance (NMR) spectroscopy to investigate the effects of a solubilizing agent on the ketoprofen (KTP) supersaturation region. Quantitative NMR analysis showed that the solubilizing agent cetyltrimethylammonium bromide (CTAB) increased both the crystalline and amorphous solubilities of KTP, shifting the KTP supersaturation region to a higher KTP concentration range. The amorphous solubility of KTP was found to be independent of the enantiomeric composition of KTP, even in the presence of CTAB. However, the supersaturation region of the S-enantiomer of KTP (s-KTP) in CTAB solutions was smaller than that of the racemic form of KTP (rac-KTP), likely because of the higher crystalline solubility of s-KTP. When KTP formed a KTP-rich phase via liquid-liquid phase separation from KTP-supersaturated solutions, CTAB was observed to be distributed into the KTP-rich phase, decreasing the chemical potential of KTP and the maximum thermodynamic activity of KTP in the aqueous phase. Additionally, the incorporation of CTAB into the KTP-rich phase diminished the solubilization effect of CTAB micelles in the aqueous phase, narrowing the KTP supersaturation region to a greater extent at higher KTP dose concentrations. Furthermore, the upper-temperature limit of the supersaturated dissolvable region of KTP was lowered in the presence of CTAB, which was rationalized by the melting point depression of the KTP crystal upon mixing with CTAB. The findings of this study highlight the importance of considering the molecular-level impact of solubilizing agents on the drug supersaturation region to fully exploit the potential benefits of supersaturated formulations.


Assuntos
Cristalização , Cristalização/métodos , Temperatura , Cetrimônio , Solubilidade , Espectroscopia de Ressonância Magnética
6.
Mol Pharm ; 20(4): 1861-1871, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36939575

RESUMO

We examined the effects of the polymer-additive and drug chiralities on the ketoprofen (KTP) supersaturation region using temperature-variable nuclear magnetic resonance (NMR). Quantitative NMR analysis revealed that the racemic KTP and corresponding S-enantiomer (rac- and s-KTP) exhibited similar amorphous solubilities in a buffer, while the crystalline solubility of s-KTP was higher than that of rac-KTP. Therefore, rac-KTP exhibited a larger supersaturation region than s-KTP. In contrast, polyvinylpyrrolidone (PVP) reduced the amorphous solubility of both rac- and s-KTP, whereas the crystalline solubility of KTP remained unchanged. Partitioning PVP into the KTP-rich phase reduced the chemical potential of KTP in the KTP-rich phase and the amorphous solubility of KTP. At higher temperatures, the distribution of PVP into the KTP-rich phase became more significant, which considerably reduced the amorphous solubility. Because the upper limit of the KTP supersaturation decreased, PVP narrowed the KTP supersaturation region. The maximum KTP supersaturation ratio decreased with increasing temperature, and the supersaturated dissolvable area of KTP finally disappeared. The maximum temperature at which KTP can form the supersaturation was lowered by replacing rac- with s-KTP and the addition of PVP. The maximum supersaturation temperature was dominated by the melting behavior of crystalline KTP in an aqueous solution. The present study highlighted that a quantitative understanding of the supersaturation region is essential to determine whether supersaturated formulations are beneficial for improving the oral absorption of poorly water-soluble drugs.


Assuntos
Cetoprofeno , Polímeros , Polímeros/química , Temperatura , Povidona/química , Solubilidade , Espectroscopia de Ressonância Magnética
7.
Mol Pharm ; 20(8): 4071-4085, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498232

RESUMO

Coamorphous formulation is a useful approach for enhancing the solubility of poorly water-soluble drugs via intermolecular interactions. In this study, a hydrogen-bonding-based coamorphous system was developed to improve drug solubility, but it barely changed the apparent permeability (Papp) of the drug. This study aimed to design a novel coamorphous salt using ionic interactions to improve drug permeability and absorption. Telmisartan (TMS), with an acidic group, was used to form a coamorphous salt with basic amlodipine (AML). Evaluation of the physicochemical properties confirmed the formation of a coamorphous salt via ionic interactions between the amine group of AML and the carboxyl group of TMS at a molar ratio of 1:1. The coamorphous salt of TMS/AML enhanced the partitioning of both drugs into octanol, indicating increased lipophilicity owing to the interaction between TMS and AML. The coamorphous salt dramatically enhanced TMS solubility (99.8 times that of untreated TMS) and decreased AML solubility owing to the interaction between TMS and AML. Although the coamorphous salt showed a decreased Papp in the permeation study in the presence of a thicker unstirred water layer (UWL) without stirring, Papp increased in the presence of a thinner UWL with stirring. The oral absorption of TMS from the coamorphous salt increased by up to 4.1 times compared to that of untreated TMS, whereas that of AML remained unchanged. Although the coamorphous salt with increased lipophilicity has a disadvantage in terms of diffusion through the UWL, the UWL is thin in human/animal bodies owing to the peristaltic action of the digestive tract. Dissociation of the coamorphous salt on the membrane surface could contribute to the partitioning of the neutral form of drugs to the membrane cells compared with untreated drugs. As a result, coamorphous salt formation has the advantage of improving the membrane permeation and oral absorption of TMS, owing to the enhanced solubility and supply of membrane-permeable free TMS on the surface of the membrane.


Assuntos
Anlodipino , Leucemia Mieloide Aguda , Animais , Humanos , Telmisartan , Solubilidade , Permeabilidade , Água
8.
Mol Pharm ; 20(9): 4729-4742, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37606988

RESUMO

1H NMR relaxometry was applied for molecular-level structural analysis of siRNA-loaded lipid nanoparticles (LNPs) to clarify the impact of the neutral lipids, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and cholesterol, on the physicochemical properties of LNP. Incorporating DSPC and cholesterol in ionizable lipid-based LNP decreased the molecular mobility of ionizable lipids. DSPC reduced the overall molecular mobility of ionizable lipids, while cholesterol specifically decreased the mobility of the hydrophobic tails of ionizable lipids, suggesting that cholesterol filled the gap between the hydrophobic tails of ionizable lipids. The decrease in molecular mobility and change in orientation of lipid mixtures contributed to the maintenance of the stacked bilayer structure of siRNA and ionizable lipids, thereby increasing the siRNA encapsulation efficiency. Furthermore, NMR relaxometry revealed that incorporating those neutral lipids enhanced PEG chain flexibility at the LNP interface. Notably, a small amount of DSPC effectively increased PEG chain flexibility, possibly contributing to the improved dispersion stability and narrower size distribution of LNPs. However, cryogenic transmission electron microscopy represented that adding excess amounts of DSPC and cholesterol into LNP resulted in the formation of deformed particles and demixing cholesterol within the LNP, respectively. The optimal lipid composition of ionizable lipid-based LNPs in terms of siRNA encapsulation efficiency and PEG chain flexibility was rationalized based on the molecular-level characterization of LNPs. Moreover, the NMR relaxation rate of tertiary amine protons of ionizable lipids, which are the interaction site with siRNA, can be a valuable indicator of the encapsulated amount of siRNA within LNPs. Thus, NMR-based analysis can be a powerful tool for efficiently designing LNP formulations and their quality control based on the molecular-level elucidation of the physicochemical properties of LNPs.


Assuntos
Imageamento por Ressonância Magnética , Prótons , RNA Interferente Pequeno , Espectroscopia de Prótons por Ressonância Magnética
9.
Nano Lett ; 22(16): 6841-6846, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35830610

RESUMO

Crystallization of organic molecules is important in a wide range of scientific disciplines. However, in contrast to maturely studied crystallization of inorganic materials, the crystallization mechanisms of organic molecules involving nucleation and crystal growth are still poorly understood. Here, we used time-resolved cryogenic transmission electron microscopy to directly map the morphological evolution of amorphous cyclosporin A (CyA) nanoparticles during CyA crystallization. We successfully observed its initial nucleation and found that the amorphous CyA nanoparticles crystallized via a pathway cognate with oriented attachment, which is the nonclassical crystallization mechanism usually reported for inorganic compounds. Crystalline mesostructured intermediates (mesocrystals) were formed during crystallization. This study revealed clear and direct evidence of mesocrystal formation and oriented attachment in organic pharmaceuticals, providing new insights into the crystallization of organic molecules and theories of nonclassical crystallization.


Assuntos
Nanopartículas , Cristalização , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Preparações Farmacêuticas
10.
Mol Pharm ; 19(1): 188-199, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34843257

RESUMO

Amorphous drug nanoparticles usually exhibit low storage stability. A comprehensive understanding of the molecular states and physicochemical properties of the product is indispensable for designing stable formulations. In the present study, an amorphous cyclosporin A (CyA) nanosuspension with a mean particle size of approximately 370 nm was prepared by wet bead milling with poloxamer 407 (P407). Interestingly, the prepared amorphous CyA nanoparticles were transformed into uniform CyA nanocrystals with a reduced mean particle size of approximately 200 nm during storage at 25 °C. The CyA nanocrystals were stably maintained for at least 1 month. The particle morphologies and molecular structures of the CyA nanosuspensions before and after storage were thoroughly characterized by cryogenic transmission electron microscopy and magic-angle spinning nuclear magnetic resonance spectroscopy, respectively. They revealed that the freshly prepared amorphous CyA nanoparticles (∼370 nm) were secondary particles composed of aggregated primary particles with an estimated size of 50 nm. A portion of P407 was found to be entrapped at the gaps between the primary particles due to aggregation, while most of P407 was dissolved in the solution either adsorbing at the solid/liquid interface or forming polymeric micelles. The entrapped P407 is considered to play an important role in the destabilization of the amorphous CyA nanoparticles. The resultant CyA nanocrystals (∼200 nm) were uniform single crystals of Form 2 hydrate and showed corner-truncated bipyramidal features. Owing to the narrow particle size distribution of the CyA nanocrystals, the rate of Ostwald ripening was slow, giving long-term stability to the CyA nanocrystals. This study provides new insights into the destabilization mechanism of amorphous drug nanoparticles.


Assuntos
Ciclosporina/química , Nanopartículas/química , Poloxâmero , Ciclosporina/administração & dosagem , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Nanopartículas/administração & dosagem , Tamanho da Partícula , Solubilidade , Soluções
11.
Mol Pharm ; 19(9): 3336-3349, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35924819

RESUMO

Herein, we investigated the effect of the solubilizers, cetyltrimethylammonium bromide (CTAB) and amino methacrylate copolymer (Eudragit E PO, EUD-E), on the apparent amorphous solubility of ketoprofen (KTP) and free KTP concentrations in an aqueous phase when a KTP-rich phase was generated by liquid-liquid phase separation. Quantitative analysis by solution nuclear magnetic resonance (NMR) revealed that the apparent amorphous solubility of KTP increased with increasing EUD-E concentrations by the solubilization of KTP into the EUD-E micelles; this was reminiscent of the improvement in the apparent crystalline solubility of KTP observed when EUD-E was added. In contrast, the apparent amorphous solubility of KTP decreased with increasing CTAB concentrations, although the solubilizing ability of CTAB was stronger than that of EUD-E when the KTP-rich phase was absent. NMR analysis revealed that CTAB was distributed into the KTP-rich phase to a relatively large extent. This resulted in a significant reduction of the chemical potential of KTP in the KTP-rich phase in the CTAB solution. Thus, the maximum free KTP concentration in the aqueous phase was reduced more significantly in the CTAB solution than in the EUD-E solution. Moreover, the solubilization effect of KTP by the CTAB micelles in the aqueous phase was drastically diminished due to the distribution of CTAB into the KTP-rich phase. As a result, the apparent amorphous solubility of KTP reached a minimum at a CTAB concentration of 200 µg/mL. A further increase in the CTAB concentration resulted in an improvement in the apparent amorphous solubility of KTP due to the solubilization effect of CTAB remaining in the aqueous phase. The present study highlights the impact of solubilizer selection on the apparent amorphous solubility and attainable supersaturation of the drug, which should be considered during the development of supersaturating formulations to obtain preferable oral absorption.


Assuntos
Excipientes , Micelas , Cetrimônio , Excipientes/química , Espectroscopia de Ressonância Magnética , Solubilidade , Água/química
12.
Mol Pharm ; 19(1): 100-114, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34702040

RESUMO

We previously reported that the polymers used in amorphous solid dispersion (ASD) formulations, such as polyvinylpyrrolidone (PVP), polyvinylpyrrolidone/vinyl acetate (PVP-VA), and hypromellose (HPMC), distribute into the drug-rich phase of ibuprofen (IBP) formed by liquid-liquid phase separation, resulting in a reduction in the maximum drug supersaturation in the aqueous phase. Herein, the mechanism underlying the partitioning of the polymer into the drug-rich phase was investigated from a thermodynamic perspective. The dissolved IBP concentration in the aqueous phase and the amount of polymer distributed into the IBP-rich phase were quantitatively analyzed in IBP-supersaturated solutions containing different polymers using variable-temperature solution-state nuclear magnetic resonance (NMR) spectroscopy. The polymer weight ratio in the IBP-rich phase increased at higher temperatures, leading to a more notable reduction of IBP amorphous solubility. Among the polymers, the amorphous solubility reduction was the greatest for the PVP-VA solution at lower temperatures, while HPMC reduced the amorphous solubility to the greatest extent at higher temperatures. The change in the order of polymer impact on the amorphous solubility resulted from the differences in the temperature dependency of polymer partitioning. The van't Hoff plot of the polymer partition coefficient revealed that both enthalpy and entropy changes for polymer transfer into the IBP-rich phase from the aqueous phase (ΔHaqueous→IBP-rich and ΔSaqueous→IBP-rich) gave positive values for most of the measured temperature range, indicating that polymer partitioning into the IBP-rich phase was an endothermic but entropically favorable process. The polymer transfer into the IBP-rich phase was more endothermic for HPMC than for PVP and PVP-VA. The solid-state NMR analysis of the IBP/polymer ASD implied that the newly formed IBP/polymer interactions in the IBP-rich phase upon polymer incorporation were weaker for HPMC, providing a rationale for the larger positive transfer enthalpy for HPMC. The change in Gibbs free energy for polymer transfer (ΔGaqueous→IBP-rich) showed negative values across the experimental temperature range, decreasing with an increase in temperature, indicating that the distribution of the polymer into the IBP-rich phase is favored at higher temperatures. Moreover, ΔGaqueous→IBP-rich for HPMC showed the greatest decrease with the temperature, likely reflecting the temperature-induced dehydration of HPMC in the aqueous phase. This study contributes fundamental insights into the phenomenon of polymer partitioning into drug-rich phases, furthering the understanding of achievable supersaturation levels and ultimately providing information on polymer selection for ASD formulations.


Assuntos
Composição de Medicamentos/métodos , Espectroscopia de Ressonância Magnética/métodos , Polímeros/química , Ibuprofeno/análise , Ibuprofeno/química , Temperatura , Termodinâmica
13.
Langmuir ; 38(34): 10454-10464, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35976036

RESUMO

In this study, we prepared drug-loaded nanocarriers made of cholesteryl oleate (ChO) and γ-cyclodextrin (γ-CD). A nanosuspension (nanosuspension-I, NS-I) containing nanoparticles with a mean size of approximately 170 nm was obtained through the solvent-diffusion method using ethanol. A second nanosuspension (nanosuspension-II, NS-II), which was prepared by freeze-drying and redispersion of NS-I, exhibited an increased particle size of approximately 210 nm. Cryogenic transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM) force-distance curves indicated that the nanoparticles in NS-I were oblong and soft. However, those in NS-II were angular and stiff, and, interestingly, multiple nanosheets covered the solid-liquid interface. Synchrotron wide-angle X-ray diffraction (WAXD) analysis of NS-II indicated that the nanoparticles in it had a core-shell structure, where the ChO crystal in the inner core was covered by multiple nanosheets of ChO/γ-CD inclusion complex crystals. The X-ray peak analysis suggested that the γ-CD columns of the nanosheets were vertically stacked onto the ChO crystal interface. It was found that the nanosheets on the nanoparticle interface were formed during the freezing process. A model drug carbamazepine (CBZ) was loaded into the ChO/γ-CD nanoparticles by pre-dissolving CBZ in ethanol during the solvent-diffusion process. Cryo-TEM, 1H NMR, ζ-potentials, and synchrotron WAXD indicated that CBZ was unexpectedly loaded into the shell as a CBZ/γ-CD inclusion complex crystalline nanosheet. The specific nanosheet structure, where ChO and CBZ coexisted in the same crystal of γ-CD, could achieve CBZ loading in the nanoparticles. ChO/γ-CD nanoparticles with the unique core-shell structure are expected to perform as practical carriers for drug delivery.


Assuntos
Nanopartículas , gama-Ciclodextrinas , Ésteres do Colesterol , Etanol , Nanopartículas/química , Tamanho da Partícula , Preparações Farmacêuticas , Solventes
14.
Nano Lett ; 21(3): 1303-1310, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33480258

RESUMO

Polymeric micelles are invaluable media as drug nanocarriers. Although knowledge of an interaction between the micelles is a key to understanding the mechanisms and developing the superior functions, the interaction potential surface between drug-incorporated polymeric micelles has not yet been quantitatively evaluated due to the extremely complex structure. Here, the interaction potential surface between drug-entrapped polymeric micelles was unveiled by combining a small-angle scattering experiment and a model-potential-free liquid-state theory. Triblock copolymer composed of poly(ethylene oxide) and poly(propylene oxide) was investigated over a wide concentration range (0.5-10.0 wt %). Effects of the entrapment of a water-insoluble hydrophobic drug, cyclosporin A, on the interaction were explored by comparing the interactions with and without the drug. The results directly clarified the high drug carrier efficiency in terms of the interaction between the micelles. In addition, an investigation based on density functional theory provided a deeper insight into the monomer contribution to the extremely stable dispersion of the nanocarrier.


Assuntos
Micelas , Polietilenoglicóis , Portadores de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Espalhamento a Baixo Ângulo
15.
Mol Pharm ; 18(7): 2764-2776, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34180226

RESUMO

Cyclodextrin (CD) has been widely used as a solubilizing agent for poorly water-soluble drugs. In the present study, the effect of CD on the amorphous drug solubility and the maximum thermodynamic activity of the drug in the aqueous phase when the drug concentration exceeded the liquid-liquid phase separation (LLPS) concentration was investigated using three chemically diverse CDs, ß-cyclodextrin (ß-CD), dimethyl-ß-CD (DM-ß-CD), and hydroxypropyl-ß-CD (HP-ß-CD). The amorphous solubility of ibuprofen (IBP) increased substantially linearly with the increase in the CD concentration due to IBP/CD complex formation. Surprisingly, although the crystalline solubility of IBP in the ß-CD solution reached a plateau at ß-CD concentrations above 3 mM (BS-type solubility diagram) because of the limited crystalline solubility of the IBP/ß-CD complex, the amorphous solubility of IBP increased linearly even when the ß-CD concentration was higher than 3 mM. The amorphous solubility of IBP in CD solutions was influenced primarily by the phase separation of the IBP-supersaturated solution to the aqueous phase and the other phase mainly composed of IBP, namely, the IBP-rich phase, via LLPS. NMR spectroscopy revealed that DM-ß-CD was distributed into the IBP-rich phase when the IBP concentration exceeded its amorphous solubility, while ß-CD and HP-ß-CD showed minimal mixing with the IBP-rich phase. NMR diffusometry showed that the maximum free IBP concentration was reduced in the DM-ß-CD solution compared to that in the buffer. The mixing of DM-ß-CD with the IBP-rich phase reduced the chemical potential of IBP in the IBP-rich phase, which in turn reduced the maximum thermodynamic activity of IBP in the aqueous phase. In contrast, the maximum free IBP concentration was unchanged when ß-CD or HP-ß-CD was present. The hydrophobic nature of the DM-ß-CD substituent may contribute to its partitioning into the IBP-rich phase. The present study highlights the impact of CD on the maximum thermodynamic activity of drugs as well as the apparent amorphous solubility of the drug. This aspect should be considered for improving the effective absorption of poorly water-soluble drugs.


Assuntos
Ciclodextrinas/análise , Ciclodextrinas/química , Excipientes/química , Imageamento por Ressonância Magnética/métodos , Química Farmacêutica , Interações Hidrofóbicas e Hidrofílicas , Ibuprofeno/análise , Ibuprofeno/química , Solubilidade
16.
Mol Pharm ; 18(11): 4111-4121, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34641686

RESUMO

The effects of pH changes and saccharin (SAC) addition on the nanostructure and mobility of the cationic aminoalkyl methacrylate copolymer Eudragit E PO (EUD-E) and its drug solubilization ability were investigated. Small-angle X-ray scattering performed using synchrotron radiation and atomic force microscopy showed that the EUD-E nanostructure, which has a size of approximately several nanometers, changed from a random coil structure at low pH (pH 4.0-5.0) to a partially folded structure at high pH (pH 5.5-6.5). The EUD-E also formed a partially folded structure in a wide pH range of 4.5-6.5 when SAC was present, and the coil-to-globule transition was moderate with pH increase, compared with that when SAC was absent. The equilibrium solubility of the neutral drug naringenin (NAR) was enhanced in the EUD-E solution and further increased as the pH increased. The enlargement of the hydrophobic region of EUD-E in association with the coil-to-globule transition led to efficient solubilization of NAR. The interaction with SAC enhanced the mobility of the EUD-E chains in the hydrophobic region of EUD-E, resulting in changes in the drug-solubilizing ability. 1H high-resolution magic-angle spinning NMR measurements revealed that the solubilized NAR in the partially folded structure of EUD-E showed higher molecular mobility in the presence of SAC than in the absence of SAC. This study highlighted that solution pH and the presence of SAC significantly changed the drug solubilization ability of EUD-E, followed by changes in the EUD-E nanostructure, including its hydrophobic region.


Assuntos
Flavanonas/química , Nanoestruturas/química , Ácidos Polimetacrílicos/química , Química Farmacêutica , Excipientes/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Prótons por Ressonância Magnética , Sacarina/química , Espalhamento a Baixo Ângulo , Solubilidade , Difração de Raios X
17.
Mol Pharm ; 16(12): 4968-4977, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31661287

RESUMO

In the present study, the molecular state of drug-rich amorphous nanodroplets was evaluated using NMR techniques to reveal the mechanism underlying the crystallization inhibition of drug-rich amorphous nanodroplets by a polymer. Ibuprofen (IBP) with a low glass transition temperature was used for direct characterization of drug-rich amorphous nanodroplets. Highly supersaturated IBP formed IBP-rich amorphous nanodroplets through phase separation from aqueous solution. Increasing the concentration of hypromellose (HPMC) in the aqueous solution contributed to the inhibition of IBP crystallization and maintenance of supersaturation at IBP amorphous solubility. Solution 1H NMR measurements of IBP supersaturated solution containing IBP-rich amorphous nanodroplets clearly showed two kinds of 1H peaks derived from the dissolved IBP in bulk water phase and phase-separated IBP in IBP-rich amorphous nanodroplets. NMR spectral analysis indicated that HPMC did not affect the chemical environment and mobility of the dissolved IBP. However, 1H spin-spin relaxation time measurements clarified that the dissolved IBP in the bulk water phase was exchanged with the IBP-rich amorphous nanodroplets with an exchange lifetime of more than 10 ms. Moreover, the 1H peaks of HPMC partially disappeared due to the formation of IBP-rich amorphous nanodroplets, suggesting that a part of HPMC distributed into the IBP-rich amorphous nanodroplets from the bulk water phase. The incorporation of HPMC significantly changed the chemical environment of the phase-separated IBP in the IBP-rich amorphous nanodroplets and strongly suppressed molecular mobility. The resulting molecular mobility suppression effectively inhibited IBP crystallization from the IBP-rich amorphous nanodroplets. Thus, direct investigation of drug-rich amorphous nanodroplets using NMR can be a promising approach for selecting appropriate pharmaceutical excipients to suppress drug crystallization in supersaturated drug solutions.


Assuntos
Derivados da Hipromelose/química , Ibuprofeno/química , Nanoestruturas/química , Cristalização , Espectroscopia de Ressonância Magnética
18.
Mol Pharm ; 16(5): 2184-2198, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30925218

RESUMO

In this study, the time-dependent evolution of amorphous probucol nanoparticles was characterized by cryogenic transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM). The nanoparticles were formed by dispersing ternary solid dispersions of probucol in water. Spray drying and cogrinding were used to prepare a spray-dried sample (SPD) and two ground-mixture samples (GM(I) and GM(II)) of probucol (PBC) form I and form II/hypromellose/sodium dodecyl sulfate ternary solid dispersions. The amorphization of PBC in the SPDs and GMs was confirmed using powder X-ray diffraction (PXRD) and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Additionally, differential scanning calorimetry showed that relatively small amounts of PBC nuclei or PBC-rich domains remained in both GMs. Then, the physical stability of drug nanoparticles formed after aqueous dispersion in the SPD and GM suspensions during storage at 40 °C was characterized. Cryogenic transmission electron microscopy was used to monitor the evolution of the amorphous PBC nanoparticles in the SPD and GM suspensions during storage. Spherical nanoparticles smaller than 30 nm were observed in all of the suspensions just after dispersion. The size of the particles in the SPD suspension gradually increased but remained on the order of nanometers and retained their spherical shape during storage. In contrast, both GM suspensions evolved through three morphologies, spherical nanoparticles that gradually increased in size, needle-like nanocrystals, and micrometer-sized crystals with various shapes. The evolution of the nanoparticles suggested that their stability in the GM suspension was lower than in the SPD suspension. PXRD analysis of the freeze-dried suspensions of the particles showed that the PBC in the nanoparticles of the SPD suspension was in the amorphous state just after dispersion, while a small fraction of the PBC in the nanoparticles of the GM suspension exhibited a crystal phase and selectively crystallized to its initial crystal form during storage. AFM force-distance curves also demonstrated the existence of crystal phase PBC in the spherical nanoparticles in the GM suspension just after dispersion. The molecular state of PBC in the ternary solid dispersion was dependent on the preparation method (either completely amorphized or incompletely amorphized with residual nuclei or drug-rich domains) and determined the potential mechanisms of PBC nanoparticle evolution after aqueous dispersion. These findings confirm the importance of the molecular state on the particle evolution and the physical stability of the drug nanoparticles in the suspension. Cryo-TEM and AFM measurements provide more direct insight for designing solid dispersion formulations to produce stable amorphous drug nanosuspensions that efficiently improve the solubility and bioavailability of poorly water-soluble drugs.


Assuntos
Desenho de Fármacos , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Transmissão/métodos , Nanopartículas/química , Probucol/química , Água/química , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Cristalização , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Liofilização , Espectroscopia de Ressonância Magnética , Tamanho da Partícula , Solubilidade , Suspensões , Difração de Raios X
19.
Mol Pharm ; 16(6): 2785-2794, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31045376

RESUMO

The present study evaluated the specific intermolecular interactions between carbamazepine (CBZ) and substituents of hypromellose acetate succinate (HPMC-AS), as well as the mechanism of inhibition of recrystallization of solid dispersions (SDs) using Fourier-transform infrared (FTIR) and solid-state nuclear magnetic resonance (NMR) spectroscopy. CBZ and HPMC derivatives, including HPMC, hypromellose acetate (HPMC-A), and hypromellose succinate (HPMC-S), were spray-dried to prepare CBZ/polymer spray-dried samples (SPDs). CBZ/HPMC SPD and CBZ/HPMC-A SPD recrystallized within 10 days at 60 °C and 0% relative humidity, whereas CBZ/HPMC-S SPD maintained its amorphous state for a longer period. FTIR and solid-state NMR measurements using 13C cross polarization (CP), 1H single-pulse, and 1H-15N CP-based heteronuclear single quantum correlation filter experiment with very fast magic angle spinning (MAS) at 70 kHz identified molecular interactions in CBZ/polymer SPDs. Although the HPMC backbone and substituents did not interact notably with CBZ and disrupt CBZ-CBZ intermolecular interactions (formed in the amorphous CBZ), acetate and succinate substituents on HPMC-A and HPMC-S disrupted CBZ-CBZ intermolecular interactions through formation of CBZ/polymer interactions. The acetate substituent formed a hydrogen bond with the NH2 group of CBZ, whereas the succinate substituent formed molecular interactions with both the C═O and NH2 groups of CBZ. Formation of relatively strong molecular interactions between CBZ and the succinate substituent followed by disruption of CBZ-CBZ intermolecular interactions effectively stabilized the amorphous state of CBZ in CBZ/HPMC-S SPD. The correlation between CBZ-polymer interactions and ability of polymers to effectively inhibit CBZ recrystallization is reflected in various commercial HPMC-AS. For example, HPMC-AS LF grade, containing higher amounts of the succinate group, was found to effectively inhibit the recrystallization of CBZ through strong molecular interactions as compared with the HPMC-AS HF grade. The present study demonstrated that a detailed investigation of molecular interactions between the drug and the polymer using FTIR and solid-state NMR spectroscopy could contribute to a suitable selection of the SD carrier.


Assuntos
Derivados da Hipromelose/química , Polímeros/química , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Chem Pharm Bull (Tokyo) ; 67(9): 906-914, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474728

RESUMO

An aminoalkyl methacrylate copolymer, Eudragit® E (EUD-E), has gained tremendous attention as a solid dispersion carrier because it efficiently stabilizes drugs in the amorphous state. Furthermore, EUD-E remarkably enhances drug dissolution in water. This review focuses on the interaction between drugs and EUD-E in solution, which contributes to the enhancement of drug concentration. Studies examining interactions between acidic drugs and EUD-E in organic solvents have revealed that the interaction occurs predominantly by electrostatic interaction, including hydrogen bonding and dipolar interactions. Other studies on interactions in aqueous solution found evidence for strong electrostatic interactions between acidic drugs and EUD-E in ion exchange experiments. 1H-NMR studies using high-resolution magic-angle spinning, nuclear Overhauser effect spectroscopy, diffusion, and relaxation time measurements successfully identified the interaction site and strength in aqueous solution. Hydrophobic and ionic interactions occurred between drugs and EUD-E. The conformation of EUD-E, which was affected by the ionic strength and pH of the aqueous media, also influenced the interaction. The knowledge discussed in this review will be helpful in designing solid dispersion formulations with EUD-E, which will efficiently enhance drug concentration and subsequent absorption into the body.


Assuntos
Preparações Farmacêuticas/química , Ácidos Polimetacrílicos/química , Água/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Solventes/química , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa