Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Phys Chem Chem Phys ; 25(28): 19270, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37424452

RESUMO

Correction for 'The Li + CaF → Ca + LiF chemical reaction under cold conditions' by Humberto da Silva Jr et al., Phys. Chem. Chem. Phys., 2023, 25, 14193-14205, https://doi.org/10.1039/D3CP01464A.

2.
Phys Chem Chem Phys ; 25(20): 14193-14205, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37165736

RESUMO

The calcium monofluoride (CaF) molecule has emerged as a promising candidate for precision measurements, quantum simulation, and ultracold chemistry experiments. Inelastic and reactive collisions of laser cooled CaF molecules in optical tweezers have recently been reported and collisions of cold Li atoms with CaF are of current experimental interest. In this paper, we report ab initio electronic structure and full-dimensional quantum dynamical calculations of the Li + CaF → LiF + Ca chemical reaction. The electronic structure calculations are performed using the internally contracted multi-reference configuration-interaction method with Davidson correction (MRCI + Q). An analytic fit of the interaction energies is obtained using a many-body expansion method. A coupled-channel quantum reactive scattering approach implemented in hyperspherical coordinates is adopted for the scattering calculations under cold conditions. Results show that the Li + CaF reaction populates several low-lying vibrational levels and many rotational levels of the product LiF molecule and that the reaction is inefficient in the 1-100 mK regime allowing sympathetic cooling of CaF by collisions with cold Li atoms.

3.
J Chem Phys ; 154(10): 104304, 2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33722024

RESUMO

We examine rotational transitions of HCl in collisions with H2 by carrying out quantum mechanical close-coupling and quasi-classical trajectory (QCT) calculations on a recently developed globally accurate full-dimensional ab initio potential energy surface for the H3Cl system. Signatures of rainbow scattering in rotationally inelastic collisions are found in the state resolved integral and differential cross sections as functions of the impact parameter (initial orbital angular momentum) and final rotational quantum number. We show the coexistence of distinct dynamical regimes for the HCl rotational transition driven by the short-range repulsive and long-range attractive forces whose relative importance depends on the collision energy and final rotational state, suggesting that the classification of rainbow scattering into rotational and l-type rainbows is effective for H2 + HCl collisions. While the QCT method satisfactorily predicts the overall behavior of the rotationally inelastic cross sections, its capability to accurately describe signatures of rainbow scattering appears to be limited for the present system.

4.
Molecules ; 26(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919915

RESUMO

In this study, we synthesized a series of fluorinated and non-fluorinated tolanes, in which one or more fluorine atoms were systematically introduced into one aromatic ring of a tolane scaffold, and systematically evaluated their photophysical properties. All the tolanes with or without fluorine substituents were found to have poor photoluminescence (PL) in tetrahydrofuran (THF) solutions. On the other hand, in the crystalline state, non-fluorinated and fluorinated tolanes with one or four fluorine atoms were less emissive, whereas fluorinated tolanes with three or five fluorine atoms exhibited high PL efficiencies (ФPL) up to 0.51. X-ray crystallographic analyses of the emissive fluorinated tolanes revealed that the position of the fluorine substituent played a key role in achieving a high ФPL. Fluorine substituents at the ortho (2/6) and para (4) positions led to tight and rigid packing due to plural π-π stacking and/or hydrogen bonding interactions, resulting in enhanced ФPL caused by the suppression of non-radiative deactivation. Additionally, fluorinated tolanes with three fluorine atoms exhibited notable aggregation-induced PL emission enhancement in THF/water mixed solvents. This demonstrates that the PL characteristics of small PL materials can be tuned depending on the usage requirements.

5.
J Chem Phys ; 153(9): 091101, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32891088

RESUMO

Stereodynamics of cold collisions has become a fertile ground for sensitive probe of molecular collisions and control of the collision outcome. A benchmark system for stereodynamic control of rotational transition is He + HD. This system was recently probed experimentally by Perreault et al. by examining quenching from j = 2 to j' = 0 state in the v = 1 vibrational manifold of HD. Here, through explicit quantum scattering calculations on a highly accurate ab initio interaction potential for He + H2, we reveal how a combination of two shape resonances arising from l = 1 and l = 2 partial waves controls the stereodynamic outcome rather than a single l = 2 partial wave attributed in the experiment. Furthermore, for collision energies below 0.5 cm-1, it is shown that stereodynamic preference for the integral cross section follows a simple universal trend.

6.
J Chem Phys ; 153(18): 184307, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33187407

RESUMO

Recent experiments on rotational quenching of HD in the v = 1, j = 2 rovibrational state in collisions with H2, D2, and He near 1 K have revealed strong stereodynamic preference stemming from isolated shape resonances. So far, the experiments and subsequent theoretical analyses have considered the initial HD rotational state in an orientation specified by the projection quantum number m or a coherent superposition of different m states. However, it is known that such stereodynamic control is generally not effective in the ultracold energy regime due to the dominance of the incoming s-wave (l = 0, partial wave). Here, we provide a detailed analysis of the stereodynamics of rotational quenching of HD by He with both m and m' resolution, where m' refers to the inelastically scattered HD. We show the existence of a significant m dependence in the m'-resolved differential and integral cross sections even in the ultracold s-wave regime with a factor greater than 60 for j = 2 → j' = 1 and a factor greater than 1300 for j = 3 → j' = 2 transitions. In the helicity frame, however, the integral cross section has no initial orientation (k) dependence in the ultracold energy regime, even resolving with respect to the final orientation (k'). The distribution of final rotational state orientations (k') is found to be statistical (uniform), regardless of the initial orientation.

7.
Beilstein J Org Chem ; 16: 1154-1162, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32550930

RESUMO

Pure organic phosphorescent molecules are attractive alternatives to transition-metal-complex-based phosphores for biomedical and technological applications owing to their abundance and nontoxicity. This article discloses the design, synthesis, and photophysical properties of fluorinated benzil and bisbenzil derivatives as potential pure organic room-temperature phosphorescent molecules. These compounds were separately converted from the corresponding fluorinated bistolanes via PdCl2-catalyzed oxidation by dimethyl sulfoxide, while nonfluorinated bistolane provided the corresponding bisbenzil derivatives exclusively in a similar manner. Intensive investigations of the photophysical properties of the benzil and bisbenzil derivatives in toluene at 25 °C showed both fluorescence with a photoluminescence (PL) band at a maximum wavelength (λPL) of around 400 nm and phosphorescence with a PL band at a λPL of around 560 nm. Interestingly, intersystem crossing effectively caused fluorinated benzils to emit phosphorescence, which may arise from immediate spin-orbit coupling involving the 1(n, π)→3(π, π) transition, unlike the case of fluorinated or nonfluorinated bisbenzil analogues. These findings offer a useful guide for developing novel pure organic room-temperature phosphorescent materials.

8.
Phys Rev Lett ; 123(1): 013401, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31386401

RESUMO

Currently, quantum dynamics theory cannot be used for quantitative predictions of molecular scattering observables at low temperatures because of two problems. The first problem is the extreme sensitivity of the low-temperature observables to details of potential energy surfaces (PESs) parametrizing the nuclear Schrödinger equation. The second problem is the large size of the basis sets required for the numerical integration of the Schrödinger equation for strongly interacting molecules in the presence of fields, which precludes the application of rigorous quantum theory to all but a few atom-molecule systems. Here, we show that, if the scattering problem is formulated as a probabilistic prediction, quantum theory can provide reliable results with exponentially reduced numerical effort. Specifically, we show that the probability distributions that an observable is in a certain range of values can be obtained by averaging the results of scattering calculations with much smaller basis sets than required for calculations of individual scattering cross sections. Moreover, we show that such distributions do not rely on the precise knowledge of the PES. This opens the possibility of making probabilistic predictions of experimentally relevant observables for a wide variety of molecular systems, currently considered out of reach of quantum dynamics theory. We demonstrate the approach by computing the probability for elastic scattering of CaH and SrOH molecules by Li atoms and SrF molecules by Rb atoms.

9.
Org Biomol Chem ; 17(28): 6911-6919, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31271184

RESUMO

Herein, we prepared novel bent fluorine-containing donor-π-acceptor (D-π-A) molecules from commercially available octafluorocyclopentene using a facile two-step procedure, revealing that the above molecules absorb UV-light and exhibit yellow photoluminescence (PL) with high PL efficiencies (ΦPL) in solution. The corresponding Stokes shifts exceeded 10 000 cm-1, and the maximum PL wavelength (λPL) strongly depended on solvent polarity or intermolecular interactions in the solid state. On the basis of a Lippert-Mataga plot, PL was confidently assigned to radiative relaxation from an intramolecular charge-transfer excited state. Moreover, the synthesized luminophores showed intense PL even in the crystalline state and exhibited alkoxy chain length-dependent PL behavior (e.g., high ΦPL, λPL = 486-540 nm).

10.
J Phys Chem A ; 123(30): 6578-6586, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31268323

RESUMO

A globally accurate full-dimensional potential energy surface (PES) for the inelastic scattering between H2 and HCl is developed on the basis of a large number of points calculated at the coupled-cluster singles, doubles, and perturbative triples level of theory. The machine-learned PES is trained with 42 417 ab initio points using the permutation invariant polynomial-neural network method, resulting in a root-mean-square fitting error of 5.6 cm-1. Both full- and reduced-dimensional quantum calculations for rotationally inelastic scattering are performed on this new PES and good agreement is obtained with previous quantum dynamical results on a reduced-dimensional model. Furthermore, strong resonances are identified at collision energies below 100 K, including cold conditions. This new PES provides a reliable platform for future studies of scattering dynamics with vibrationally excited collision partners in a wide range of collision energies extending to cold and ultracold conditions.

11.
J Chem Phys ; 150(7): 074110, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795668

RESUMO

Rigorous coupled-channel quantum scattering calculations on molecular collisions in external fields are computationally demanding due to the need to account for a large number of coupled channels and multiple total angular momenta J of the collision complex. We show that by restricting the total angular momentum basis to include only the states with helicities K ≤ Kmax, it is possible to obtain accurate elastic and inelastic cross sections for low-temperature He + CaH, Li + CaH, and Li + SrOH collisions in the presence of an external magnetic field at a small fraction of the computational cost of the full coupled-channel calculations (where K is the projection of the molecular rotational angular momentum on the atom-diatom axis). The optimal size of the truncated helicity basis set depends on the mechanism of the inelastic process and on the magnitude of the external magnetic field, with the minimal basis set (Kmax = 0) producing quantitatively accurate results for, e.g., ultracold Li + CaH and Li + SrOH scattering at low magnetic fields, leading to nearly 90-fold gain in computational efficiency. Larger basis sets are required to accurately describe the resonance structure in the magnetic field dependence of Li + CaH and Li + SrOH inelastic cross sections in the few partial wave-regime as well as indirect spin relaxation in He + CaH collisions. Our calculations indicate that the resonance structure is due to an interplay of the spin-rotation and Coriolis couplings between the basis states of different K and the couplings between the rotational states of the same K induced by the anisotropy of the interaction potential.

12.
Sensors (Basel) ; 20(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878103

RESUMO

In this paper, a back-illuminated (BSI) time-of-flight (TOF) sensor using 0.2 µm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) technology is developed for long-range laser imaging detection and ranging (LiDAR) application. A 200 µm-thick bulk silicon in the SOI substrate is fully depleted by applying high negative voltage at the backside for higher quantum efficiency (QE) in a near-infrared (NIR) region. The proposed SOI-based four-tap charge modulator achieves a high-speed charge modulation and high modulation contrast of 71% in a NIR region. In addition, in-pixel drain function is used for short-pulse TOF measurements. A distance measurement up to 27 m is carried out with +1.8~-3.0% linearity error and range resolution of 4.5 cm in outdoor conditions. The measured QE of 55% is attained at 940 nm which is suitable for outdoor use due to the reduced spectral components of solar radiation.

13.
Phys Rev Lett ; 121(17): 173402, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30411953

RESUMO

We present a joint experimental and theoretical study of spin dynamics of a single ^{88}Sr^{+} ion colliding with an ultracold cloud of Rb atoms in various hyperfine states. While spin exchange between the two species occurs after 9.1(6) Langevin collisions on average, spin relaxation of the Sr^{+} ion Zeeman qubit occurs after 48(7) Langevin collisions, which is significantly slower than in previously studied systems due to a small second-order spin-orbit coupling. Furthermore, a reduction of the endothermic spin-exchange rate is observed as the magnetic field is increased. Interestingly, we find that while the phases acquired when colliding on the spin singlet and triplet potentials vary largely between different partial waves, the singlet-triplet phase difference, which determines the spin-exchange cross section, remains locked to a single value over a wide range of partial waves, which leads to quantum interference effects.

14.
Org Biomol Chem ; 16(31): 5609-5617, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30027986

RESUMO

We developed and characterized four polyfluorinated bistolane derivatives. These compounds, which possess either two alkoxy substituents or an alkoxy group and a bromine atom in their two molecular terminals, were synthesized from readily available 4-alkoxy-1-ethynylbenzene with a facile three-step procedure. Their thermodynamic and photophysical properties were evaluated in detail, and they were found to display both liquid-crystalline (LC) and photoluminescence properties. Remarkably, the photoluminescence behaviors dramatically changed during the thermal phase transition between the crystal and LC phases. Thus, these polyfluorinated bistolanes may be promising candidates for thermoresponsive luminous molecules.

15.
BMC Pulm Med ; 16: 38, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26940352

RESUMO

BACKGROUND: Nintedanib is a multi-target receptor tyrosine kinase inhibitor. In two recent randomized phase 3 trials (INPULSIS™-1 and -2), it has been shown to slow the disease progression of idiopathic pulmonary fibrosis (IPF) by reducing the decline in the forced vital capacity (FVC). Although the INPULSIS™ trials indicate that nintedanib may serve to prevent acute exacerbations or delay the time to the first acute exacerbation, a certain number of IPF patients develop acute exacerbations while receiving nintedanib. However, there has been no report on the readministration of nintedanib in IPF patients who develop acute exacerbations during initial treatment with nintedanib. CASE PRESENTATION: A 64-year-old man with IPF had nintedanib added to his ongoing pirfenidone therapy. He developed dyspnea after 65 days and presented with hypoxemia after 68 days. At presentation, chest computed tomography showed newly developed diffuse ground glass opacities with the pre-existing subpleural reticular shadows. Because of the absence of infection or other potential causative factors, we diagnosed an acute exacerbation of IPF. Nintedanib was temporarily discontinued and the acute exacerbation was successfully managed with intensive treatment. We re-initiated nintedanib 30 days after cessation, which helped stabilize his FVC for 8 months. Nintedanib was safely continued for 28 months until he died of a bacterial infection. CONCLUSION: To the best of our our knowledge, this is the first reported case of an acute exacerbation of IPF during nintedanib treatment, wherein nintedanib was safely and successfully restarted after treatment of the acute exacerbation. Our case indicates that nintedanib can be safely resumed and a desired effect on FVC can be obtained, even in IPF patients who develop acute exacerbations. However, we recommend close monitoring and appropriate measures until the long-term safety profile is clarified.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Indóis/uso terapêutico , Piridonas/uso terapêutico , Progressão da Doença , Quimioterapia Combinada , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Pulmão/diagnóstico por imagem , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Capacidade Vital
16.
Mol Microbiol ; 91(2): 242-55, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24224907

RESUMO

The mechanism by which the membrane synthetic machinery might be co-organized with the cell-division architecture during the bacterial cell cycle remains to be investigated. We characterized a key enzyme of phospholipid and fatty acid synthesis in Bacillus subtilis, the acyl-acyl carrier protein phosphate acyltransferase (PlsX), and identified it as a component of the cell-division machinery. Comprehensive interaction analysis revealed that PlsX interacts with FtsA, the FtsZ-anchoring protein. PlsX mainly localized at the potential division site independent of FtsA and FtsZ and then colocalized with FtsA. By multidirectional approaches, we revealed that the Z-ring stabilizes the association of PlsX at the septum and pole. The localization of PlsX is also affected by the progression of DNA replication. PlsX is needed for cell division and its inactivation leads to aberrant Z-ring formation. We propose that PlsX localization is prior to Z-ring formation in the hierarchy of septum formation events and that PlsX is important for co-ordinating membrane synthesis with cell division in order to properly complete septum formation.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Divisão Celular , Polaridade Celular , Replicação do DNA , DNA Bacteriano/fisiologia , Estabilidade Enzimática
17.
Phys Chem Chem Phys ; 17(36): 23602-12, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26300267

RESUMO

Ionization of a molecule can greatly alter its electronic structure as well as its geometric structure. In this collaborative experimental and theoretical study, we examined variance in hyperconjugation upon ionization of diethyl ether (DEE) and diethyl sulfide (DES). We obtained the experimental gas phase vibrational spectra of DEE, DES, DEE(+), DES(+), DEE(+)-Ar, and DES(+)-Ar in the wavenumber region of 2500 to 3600 cm(-1). For DEE(+) and DEE(+)-Ar, we observed a greatly red shifted CH stretching peak at 2700 cm(-1), while the lowest CH stretching peaks for DEE, DES, DES(+) and DES(+)-Ar were observed around 2850 cm(-1). For DEE(+), we calculated a drastic red shifted CH stretching peak at 2760 cm(-1), but for DEE, DES, and DES(+) the lowest CH stretching peaks were calculated to be at 2860, 2945, and 2908 cm(-1), respectively. In addition, for DEE, the minima (maxima) geometry in the neutral state becomes a maxima (minima) geometry in the cationic state, while similar minima geometries are seen in neutral and cationic states of DES. These experimental and theoretical findings were rationalized through the natural bond orbital analysis by quantifying the hyperconjugation between the σCH orbital and the ionized singly occupied p orbital of the oxygen (sulfur) in DEE(+) (DES(+)). This study showed how orientation with the ionized orbital can greatly affect the neighboring CH bond strength and its polarity, as well as the geometry of the system. Furthermore, this change in the CH bond strength between DEE(+) and DES(+) is quantified from the energies for intramolecular proton transfer in the two cations.

18.
J Phys Chem A ; 119(44): 10887-92, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26469266

RESUMO

Understanding the spectral features for solvated hydronium has been hindered due to the strong and complex vibrational couplings that lead to broad bands in the aqueous phase. In this work, utilizing ab initio vibrational calculations, we determine how the vibrational couplings induced by the Ar microsolvation in H3O(+)Arm m = 0-3 affect the observed spectra. With theoretical peak intensities and peak positions, we assign the experimental spectra. We also show that an increase in the number of Ar atoms results in an anticooperative blue shifting in the Ar-tagged OH stretching bands. This change in peak position of the OH stretching fundamental modulates the Fermi resonance with the bending overtone. This is observed as a distinct doublet feature at 3200 cm(-1) with varying intensities for H3O(+)Ar2 and H3O(+)Ar3. The coupling between the in-plane rotation of the hydronium and the bending modes of H3O(+) leads to the existence of a strong association bands around 1900 cm(-1).


Assuntos
Argônio/química , Simulação por Computador , Análise Espectral/métodos , Vibração , Água/química
19.
J Phys Chem A ; 119(20): 4885-90, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25915395

RESUMO

In the IR spectrum of the diethyl ether cation, an extraordinarily intense band, with an extremely broad bandwidth, was observed at 2700 cm(-1), much lower frequency than normal CH stretch frequencies. This band is assigned to the stretch band of the CH bond, which is hyperconjugated with the singly occupied molecular orbital of the oxygen atom. The hyperconjugation causes the delocalization of the σ electron of the CH bond so that it enhances the acidity of the CH bond as well as the CH stretch band intensity. Theoretical simulation shows that the strength of hyperconjugation varies greatly with internal rotation of the ethyl group, and this is reflected in the large width of the observed CH stretch band. These results indicate that the DEE cation drastically changes its property from aprotic to highly acidic by the rotational isomerization of the ethyl group.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa