Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Cell ; 166(3): 766-778, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27453469

RESUMO

The ability to reliably and reproducibly measure any protein of the human proteome in any tissue or cell type would be transformative for understanding systems-level properties as well as specific pathways in physiology and disease. Here, we describe the generation and verification of a compendium of highly specific assays that enable quantification of 99.7% of the 20,277 annotated human proteins by the widely accessible, sensitive, and robust targeted mass spectrometric method selected reaction monitoring, SRM. This human SRMAtlas provides definitive coordinates that conclusively identify the respective peptide in biological samples. We report data on 166,174 proteotypic peptides providing multiple, independent assays to quantify any human protein and numerous spliced variants, non-synonymous mutations, and post-translational modifications. The data are freely accessible as a resource at http://www.srmatlas.org/, and we demonstrate its utility by examining the network response to inhibition of cholesterol synthesis in liver cells and to docetaxel in prostate cancer lines.


Assuntos
Bases de Dados de Proteínas , Proteoma , Acesso à Informação , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Colesterol/biossíntese , Docetaxel , Feminino , Humanos , Internet , Fígado/efeitos dos fármacos , Masculino , Mutação , Neoplasias da Próstata/tratamento farmacológico , Splicing de RNA , Taxoides/uso terapêutico
2.
Mol Cell ; 83(6): 994-1011.e18, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36806354

RESUMO

All species continuously evolve short open reading frames (sORFs) that can be templated for protein synthesis and may provide raw materials for evolutionary adaptation. We analyzed the evolutionary origins of 7,264 recently cataloged human sORFs and found that most were evolutionarily young and had emerged de novo. We additionally identified 221 previously missed sORFs potentially translated into peptides of up to 15 amino acids-all of which are smaller than the smallest human microprotein annotated to date. To investigate the bioactivity of sORF-encoded small peptides and young microproteins, we subjected 266 candidates to a mass-spectrometry-based interactome screen with motif resolution. Based on these interactomes and additional cellular assays, we can associate several candidates with mRNA splicing, translational regulation, and endocytosis. Our work provides insights into the evolutionary origins and interaction potential of young and small proteins, thereby helping to elucidate this underexplored territory of the human proteome.


Assuntos
Peptídeos , Biossíntese de Proteínas , Humanos , Fases de Leitura Aberta , Peptídeos/genética , Proteômica , Micropeptídeos
3.
J Biol Chem ; 300(8): 107557, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002668

RESUMO

Glycosylphosphatidylinositol (GPI) anchor protein modification in Plasmodium species is well known and represents the principal form of glycosylation in these organisms. The structure and biosynthesis of GPI anchors of Plasmodium spp. has been primarily studied in the asexual blood stage of Plasmodium falciparum and is known to contain the typical conserved GPI structure of EtN-P-Man3GlcN-PI. Here, we have investigated the circumsporozoite protein (CSP) for the presence of a GPI anchor. CSP is the major surface protein of Plasmodium sporozoites, the infective stage of the malaria parasite. While it is widely assumed that CSP is a GPI-anchored cell surface protein, compelling biochemical evidence for this supposition is absent. Here, we employed metabolic labeling and mass-spectrometry-based approaches to confirm the presence of a GPI anchor in CSP. Biosynthetic radiolabeling of CSP with [3H]-palmitic acid and [3H]-ethanolamine, with the former being base-labile and therefore ester-linked, provided strong evidence for the presence of a GPI anchor on CSP, but these data alone were not definitive. To provide further evidence, immunoprecipitated CSP was analyzed for the presence of myo-inositol (a characteristic component of GPI anchor) using strong acid hydrolysis and GC-MS for highly sensitive and quantitative detection. The single ion monitoring (SIM) method for GC-MS analysis confirmed the presence of the myo-inositol component in CSP. Taken together, these data provide confidence that the long-assumed presence of a GPI anchor on this important parasite protein is correct.


Assuntos
Membrana Celular , Glicosilfosfatidilinositóis , Plasmodium falciparum , Proteínas de Protozoários , Esporozoítos , Proteínas de Protozoários/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Glicosilfosfatidilinositóis/química , Membrana Celular/metabolismo , Esporozoítos/metabolismo , Plasmodium falciparum/metabolismo , Animais , Proteínas de Membrana/metabolismo , Humanos
4.
Mol Microbiol ; 121(3): 394-412, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37314965

RESUMO

Plasmodium parasites, the eukaryotic pathogens that cause malaria, feature three distinct invasive forms tailored to the host environment they must navigate and invade for life cycle progression. One conserved feature of these invasive forms is the micronemes, apically oriented secretory organelles involved in egress, motility, adhesion, and invasion. Here we investigate the role of GPI-anchored micronemal antigen (GAMA), which shows a micronemal localization in all zoite forms of the rodent-infecting species Plasmodium berghei. ∆GAMA parasites are severely defective for invasion of the mosquito midgut. Once formed, oocysts develop normally, however, sporozoites are unable to egress and exhibit defective motility. Epitope-tagging of GAMA revealed tight temporal expression late during sporogony and showed that GAMA is shed during sporozoite gliding motility in a similar manner to circumsporozoite protein. Complementation of P. berghei knockout parasites with full-length P. falciparum GAMA partially restored infectivity to mosquitoes, indicating conservation of function across Plasmodium species. A suite of parasites with GAMA expressed under the promoters of CTRP, CAP380, and TRAP, further confirmed the involvement of GAMA in midgut infection, motility, and vertebrate infection. These data show GAMA's involvement in sporozoite motility, egress, and invasion, implicating GAMA as a regulator of microneme function.


Assuntos
Culicidae , Parasitos , Animais , Culicidae/metabolismo , Culicidae/parasitologia , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Oocistos , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Esporozoítos/metabolismo
5.
Mol Cell Proteomics ; 22(9): 100631, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572790

RESUMO

Ribosome profiling (Ribo-Seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of noncanonical sites of ribosome translation outside the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7000 noncanonical ORFs are translated, which, at first glance, has the potential to expand the number of human protein CDSs by 30%, from ∼19,500 annotated CDSs to over 26,000 annotated CDSs. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of noncanonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome but searching for guidance on how to proceed. Here, we discuss the current state of noncanonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein coding."


Assuntos
Biossíntese de Proteínas , Proteoma , Humanos , Proteoma/metabolismo , Proteômica/métodos , Perfil de Ribossomos , Ribossomos/metabolismo , Fases de Leitura Aberta
6.
J Proteome Res ; 23(2): 532-549, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38232391

RESUMO

Since 2010, the Human Proteome Project (HPP), the flagship initiative of the Human Proteome Organization (HUPO), has pursued two goals: (1) to credibly identify the protein parts list and (2) to make proteomics an integral part of multiomics studies of human health and disease. The HPP relies on international collaboration, data sharing, standardized reanalysis of MS data sets by PeptideAtlas and MassIVE-KB using HPP Guidelines for quality assurance, integration and curation of MS and non-MS protein data by neXtProt, plus extensive use of antibody profiling carried out by the Human Protein Atlas. According to the neXtProt release 2023-04-18, protein expression has now been credibly detected (PE1) for 18,397 of the 19,778 neXtProt predicted proteins coded in the human genome (93%). Of these PE1 proteins, 17,453 were detected with mass spectrometry (MS) in accordance with HPP Guidelines and 944 by a variety of non-MS methods. The number of neXtProt PE2, PE3, and PE4 missing proteins now stands at 1381. Achieving the unambiguous identification of 93% of predicted proteins encoded from across all chromosomes represents remarkable experimental progress on the Human Proteome parts list. Meanwhile, there are several categories of predicted proteins that have proved resistant to detection regardless of protein-based methods used. Additionally there are some PE1-4 proteins that probably should be reclassified to PE5, specifically 21 LINC entries and ∼30 HERV entries; these are being addressed in the present year. Applying proteomics in a wide array of biological and clinical studies ensures integration with other omics platforms as reported by the Biology and Disease-driven HPP teams and the antibody and pathology resource pillars. Current progress has positioned the HPP to transition to its Grand Challenge Project focused on determining the primary function(s) of every protein itself and in networks and pathways within the context of human health and disease.


Assuntos
Anticorpos , Proteoma , Humanos , Proteoma/genética , Proteoma/análise , Bases de Dados de Proteínas , Espectrometria de Massas/métodos , Proteômica/métodos
7.
Miner Depos ; 59(5): 885-905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774768

RESUMO

The Kirazli deposit is located at the center of the Biga Peninsula metallogenic province, in a geological setting characterized by an extensional tectonic environment. A NNW-SSE trending high-sulfidation (HS) orebody with a total reserve of 33.86 Mt @ 0.69 g/t Au and 9.42 g/t Ag lies beneath the Kirazli Main zone. A porphyry Cu orebody hosted by Eocene intrusive and volcanic rocks has been intersected by drilling within its vicinity. The HS epithermal deposit is hosted by a partly silicified and brecciated Oligocene volcanic and volcaniclastic sequence consisting mainly of basaltic andesite lava flow and lithic/crystal tuff. Lithogeochemistry and zircon U-Pb radiometric ages allow us to distinguish three distinct high-K calc-alkaline magmatic events at ca. 41, 38, and 32 Ma, sourced by metasomatized mantle melts, which have interacted with the crust during their ascent. Porphyry Cu mineralization took place at 36.7 ± 0.4 Ma (muscovite 40Ar/39Ar age) with subsequent re-opening and base metal deposition. Crosscutting quartz-pyrite-molybdenite veins were emplaced at 33.6 ± 0.2 Ma (molybdenite Re-Os age), and followed by the HS epithermal Au-Ag event at ca. 31 Ma, based on a previous study. Our radiometric data indicate that the Kirazli deposit has recorded a long-lasting Cenozoic magmatic and metallogenic evolution during about 10 Myr. Our study demonstrates that successive, independent, and overprinting, but genetically unrelated, HS epithermal precious metal, hydrothermal Mo, base metal, and porphyry Cu systems have been active at the same location during protracted extensional tectonics of the Biga Peninsula. Supplementary Information: The online version contains supplementary material available at 10.1007/s00126-023-01235-2.

8.
Am J Respir Cell Mol Biol ; 68(6): 651-663, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36780661

RESUMO

The integration of transcriptomic and proteomic data from lung tissue with chronic obstructive pulmonary disease (COPD)-associated genetic variants could provide insight into the biological mechanisms of COPD. Here, we assessed associations between lung transcriptomics and proteomics with COPD in 98 subjects from the Lung Tissue Research Consortium. Low correlations between transcriptomics and proteomics were generally observed, but higher correlations were found for COPD-associated proteins. We integrated COPD risk SNPs or SNPs near COPD-associated proteins with lung transcripts and proteins to identify regulatory cis-quantitative trait loci (QTLs). Significant expression QTLs (eQTLs) and protein QTLs (pQTLs) were found regulating multiple COPD-associated biomarkers. We investigated mediated associations from significant pQTLs through transcripts to protein levels of COPD-associated proteins. We also attempted to identify colocalized effects between COPD genome-wide association studies and eQTL and pQTL signals. Evidence was found for colocalization between COPD genome-wide association study signals and a pQTL for RHOB and an eQTL for DSP. We applied weighted gene co-expression network analysis to find consensus COPD-associated network modules. Two network modules generated by consensus weighted gene co-expression network analysis were associated with COPD with a false discovery rate lower than 0.05. One network module is related to the catenin complex, and the other module is related to plasma membrane components. In summary, multiple cis-acting determinants of transcripts and proteins associated with COPD were identified. Colocalization analysis, mediation analysis, and correlation-based network analysis of multiple omics data may identify key genes and proteins that work together to influence COPD pathogenesis.


Assuntos
Proteômica , Doença Pulmonar Obstrutiva Crônica , Humanos , Estudo de Associação Genômica Ampla , Transcriptoma/genética , Predisposição Genética para Doença , Doença Pulmonar Obstrutiva Crônica/patologia , Pulmão/patologia , Polimorfismo de Nucleotídeo Único
9.
J Proteome Res ; 22(2): 615-624, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36648445

RESUMO

The Trans-Proteomic Pipeline (TPP) mass spectrometry data analysis suite has been in continual development and refinement since its first tools, PeptideProphet and ProteinProphet, were published 20 years ago. The current release provides a large complement of tools for spectrum processing, spectrum searching, search validation, abundance computation, protein inference, and more. Many of the tools include machine-learning modeling to extract the most information from data sets and build robust statistical models to compute the probabilities that derived information is correct. Here we present the latest information on the many TPP tools, and how TPP can be deployed on various platforms from personal Windows laptops to Linux clusters and expansive cloud computing environments. We describe tutorials on how to use TPP in a variety of ways and describe synergistic projects that leverage TPP. We conclude with plans for continued development of TPP.


Assuntos
Proteômica , Software , Proteômica/métodos , Espectrometria de Massas , Probabilidade , Análise de Dados
10.
J Proteome Res ; 22(7): 2525-2537, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37294184

RESUMO

By far the largest contribution to ion detectability in liquid chromatography-driven mass spectrometry-based proteomics is the efficient generation of peptide molecular ions by the electrospray source. To maximize the transfer of peptides from the liquid to gaseous phase and allow molecular ions to enter the mass spectrometer at microspray flow rates, an efficient electrospray process is required. Here we describe the superior performance of newly design vacuum insulated probe heated electrospray ionization (VIP-HESI) source coupled to a Bruker timsTOF PRO mass spectrometer operated in microspray mode. VIP-HESI significantly improves chromatography signals in comparison to electrospray ionization (ESI) and nanospray ionization using the captivespray (CS) source and provides increased protein detection with higher quantitative precision, enhancing reproducibility of sample injection amounts. Protein quantitation of human K562 lymphoblast samples displayed excellent chromatographic retention time reproducibility (<10% coefficient of variation (CV)) with no signal degradation over extended periods of time, and a mouse plasma proteome analysis identified 12% more plasma protein groups allowing large-scale analysis to proceed with confidence (1,267 proteins at 0.4% CV). We show that the Slice-PASEF VIP-HESI mode is sensitive in identifying low amounts of peptide without losing quantitative precision. We demonstrate that VIP-HESI coupled with microflow rate chromatography achieves a higher depth of coverage and run-to-run reproducibility for a broad range of proteomic applications. Data and spectral libraries are available via ProteomeXchange (PXD040497).


Assuntos
Proteômica , Espectrometria de Massas por Ionização por Electrospray , Humanos , Animais , Camundongos , Espectrometria de Massas por Ionização por Electrospray/métodos , Reprodutibilidade dos Testes , Proteômica/métodos , Vácuo , Cromatografia Líquida/métodos , Peptídeos/análise , Íons , Proteoma/análise
11.
J Proteome Res ; 22(2): 561-569, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36598107

RESUMO

The Crux tandem mass spectrometry data analysis toolkit provides a collection of algorithms for analyzing bottom-up proteomics tandem mass spectrometry data. Many publications have described various individual components of Crux, but a comprehensive summary has not been published since 2014. The goal of this work is to summarize the functionality of Crux, focusing on developments since 2014. We begin with empirical results demonstrating our recently implemented speedups to the Tide search engine. Other new features include a new score function in Tide, two new confidence estimation procedures, as well as three new tools: Param-medic for estimating search parameters directly from mass spectrometry data, Kojak for searching cross-linked mass spectra, and DIAmeter for searching data independent acquisition data against a sequence database.


Assuntos
Software , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Bases de Dados de Proteínas , Algoritmos
12.
J Proteome Res ; 22(2): 647-655, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36629399

RESUMO

Fragmentation ion spectral analysis of chemically cross-linked proteins is an established technology in the proteomics research repertoire for determining protein interactions, spatial orientation, and structure. Here we present Kojak version 2.0, a major update to the original Kojak algorithm, which was developed to identify cross-linked peptides from fragment ion spectra using a database search approach. A substantially improved algorithm with updated scoring metrics, support for cleavable cross-linkers, and identification of cross-links between 15N-labeled homomultimers are among the newest features of Kojak 2.0 presented here. Kojak 2.0 is now integrated into the Trans-Proteomic Pipeline, enabling access to dozens of additional tools within that suite. In particular, the PeptideProphet and iProphet tools for validation of cross-links improve the sensitivity and accuracy of correct cross-link identifications at user-defined thresholds. These new features improve the versatility of the algorithm, enabling its use in a wider range of experimental designs and analysis pipelines. Kojak 2.0 remains open-source and multiplatform.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Peptídeos/análise , Proteínas/química , Software , Reagentes de Ligações Cruzadas/química
13.
J Proteome Res ; 22(4): 1024-1042, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36318223

RESUMO

The 2022 Metrics of the Human Proteome from the HUPO Human Proteome Project (HPP) show that protein expression has now been credibly detected (neXtProt PE1 level) for 18 407 (93.2%) of the 19 750 predicted proteins coded in the human genome, a net gain of 50 since 2021 from data sets generated around the world and reanalyzed by the HPP. Conversely, the number of neXtProt PE2, PE3, and PE4 missing proteins has been reduced by 78 from 1421 to 1343. This represents continuing experimental progress on the human proteome parts list across all the chromosomes, as well as significant reclassifications. Meanwhile, applying proteomics in a vast array of biological and clinical studies continues to yield significant findings and growing integration with other omics platforms. We present highlights from the Chromosome-Centric HPP, Biology and Disease-driven HPP, and HPP Resource Pillars, compare features of mass spectrometry and Olink and Somalogic platforms, note the emergence of translation products from ribosome profiling of small open reading frames, and discuss the launch of the initial HPP Grand Challenge Project, "A Function for Each Protein".


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/genética , Proteoma/análise , Bases de Dados de Proteínas , Espectrometria de Massas/métodos , Fases de Leitura Aberta , Proteômica/métodos
14.
PLoS Pathog ; 17(2): e1009293, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33534803

RESUMO

Malaria remains a major global health problem, creating a constant need for research to identify druggable weaknesses in P. falciparum biology. As important components of cellular redox biology, members of the Thioredoxin (Trx) superfamily of proteins have received interest as potential drug targets in Apicomplexans. However, the function and essentiality of endoplasmic reticulum (ER)-localized Trx-domain proteins within P. falciparum has not been investigated. We generated conditional mutants of the protein PfJ2-an ER chaperone and member of the Trx superfamily-and show that it is essential for asexual parasite survival. Using a crosslinker specific for redox-active cysteines, we identified PfJ2 substrates as PfPDI8 and PfPDI11, both members of the Trx superfamily as well, which suggests a redox-regulatory role for PfJ2. Knockdown of these PDIs in PfJ2 conditional mutants show that PfPDI11 may not be essential. However, PfPDI8 is required for asexual growth and our data suggest it may work in a complex with PfJ2 and other ER chaperones. Finally, we show that the redox interactions between these Trx-domain proteins in the parasite ER and their substrates are sensitive to small molecule inhibition. Together these data build a model for how Trx-domain proteins in the P. falciparum ER work together to assist protein folding and demonstrate the suitability of ER-localized Trx-domain proteins for antimalarial drug development.


Assuntos
Retículo Endoplasmático/parasitologia , Proteínas de Choque Térmico HSP40/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Tiorredoxina Redutase 2/metabolismo , Antimaláricos/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/genética , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/metabolismo , Chaperonas Moleculares , Oxirredução , Estresse Oxidativo , Dobramento de Proteína , Proteínas de Protozoários/genética , Tiorredoxina Redutase 2/genética
15.
J Proteome Res ; 21(2): 420-437, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34962809

RESUMO

Proteomics has enormous applications in human and animal research. However, proteomic studies in fisheries science are quite scanty particularly for economically important species. Few proteomic studies have been carried out in model fish species, but comprehensive proteomics of aquaculture species are still scarce. This study aimed to perform a comprehensive organ-based protein profiling of important tissue samples for one of the most important aquaculture species,Labeo rohita.Deep proteomic profiling of 17 histologically normal tissues, blood plasma, and embryo provided mass-spectrometric evidence for 8498 proteins at 1% false discovery rate that make up about 26% of the total annotated protein-coding sequences in Rohu. Tissue-wise expression analysis was performed, and the presence of several biologically important proteins was also verified using a targeted proteomic approach. We identified the global post-translational modifications (PTMs) in terms of acetylation (N-terminus and lysine), methylation (N-terminus, lysine, and arginine), and phosphorylation (serine, threonine, and tyrosine) to present a comprehensive proteome resource. An interactive web-based portal has been developed for an overall landscape of protein expression across the studied tissues of Labeo rohita (www.fishprot.org). This draft proteome map of Labeo rohita would advance basic and applied research in aquaculture to meet the most critical challenge of providing food and nutritional security to an increasing world population.


Assuntos
Cyprinidae , Proteoma , Animais , Cyprinidae/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Humanos , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Proteômica , Água/metabolismo
16.
Anal Chem ; 94(8): 3501-3509, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35184559

RESUMO

Drugs are often metabolized to reactive intermediates that form protein adducts. Adducts can inhibit protein activity, elicit immune responses, and cause life-threatening adverse drug reactions. The masses of reactive metabolites are frequently unknown, rendering traditional mass spectrometry-based proteomics approaches incapable of adduct identification. Here, we present Magnum, an open-mass search algorithm optimized for adduct identification, and Limelight, a web-based data processing package for analysis and visualization of data from all existing algorithms. Limelight incorporates tools for sample comparisons and xenobiotic-adduct discovery. We validate our tools with three drug/protein combinations and apply our label-free workflow to identify novel xenobiotic-protein adducts in CYP3A4. Our new methods and software enable accurate identification of xenobiotic-protein adducts with no prior knowledge of adduct masses or protein targets. Magnum outperforms existing label-free tools in xenobiotic-protein adduct discovery, while Limelight fulfills a major need in the rapidly developing field of open-mass searching, which until now lacked comprehensive data visualization tools.


Assuntos
Proteínas , Proteômica , Algoritmos , Adutos de DNA , Espectrometria de Massas/métodos , Proteínas/análise , Proteômica/métodos , Software
17.
J Proteome Res ; 20(4): 1911-1917, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33529024

RESUMO

The efficiency of shotgun proteomic analysis is dependent on the reproducibility of the peptide cleavage process during sample preparation. To generate rapid and useful metrics for peptide cleavage efficiency, as in enzymatic or chemical cleavage, SPACEPro was developed to evaluate efficiency and reproducibility of protein cleavage in peptide samples following data-dependent analysis by mass spectrometry. SPACEPro analyzes samples at the peptide-spectrum match (PSM), peptide, and protein levels to provide a comprehensive representation of the overall sample processing to peptides. All output is provided in human-readable text and JSON files that can be further processed to assess the cleavage efficiency on proteins within the sample. SPACEPro provides a snapshot of the protein cleavage efficiency through very minimal effort so that the user is informed of the quality of the sample processing efficiency and can accordingly develop protocols to improve the initial sample preparation for subsequent analyses.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Humanos , Reprodutibilidade dos Testes , Software , Tripsina
18.
J Proteome Res ; 20(12): 5227-5240, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34670092

RESUMO

The 2021 Metrics of the HUPO Human Proteome Project (HPP) show that protein expression has now been credibly detected (neXtProt PE1 level) for 18 357 (92.8%) of the 19 778 predicted proteins coded in the human genome, a gain of 483 since 2020 from reports throughout the world reanalyzed by the HPP. Conversely, the number of neXtProt PE2, PE3, and PE4 missing proteins has been reduced by 478 to 1421. This represents remarkable progress on the proteome parts list. The utilization of proteomics in a broad array of biological and clinical studies likewise continues to expand with many important findings and effective integration with other omics platforms. We present highlights from the Immunopeptidomics, Glycoproteomics, Infectious Disease, Cardiovascular, Musculo-Skeletal, Liver, and Cancers B/D-HPP teams and from the Knowledgebase, Mass Spectrometry, Antibody Profiling, and Pathology resource pillars, as well as ethical considerations important to the clinical utilization of proteomics and protein biomarkers.


Assuntos
Benchmarking , Proteoma , Bases de Dados de Proteínas , Humanos , Espectrometria de Massas/métodos , Proteoma/análise , Proteoma/genética , Proteômica/métodos
19.
J Proteome Res ; 20(12): 5241-5263, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672606

RESUMO

The study of proteins circulating in blood offers tremendous opportunities to diagnose, stratify, or possibly prevent diseases. With recent technological advances and the urgent need to understand the effects of COVID-19, the proteomic analysis of blood-derived serum and plasma has become even more important for studying human biology and pathophysiology. Here we provide views and perspectives about technological developments and possible clinical applications that use mass-spectrometry(MS)- or affinity-based methods. We discuss examples where plasma proteomics contributed valuable insights into SARS-CoV-2 infections, aging, and hemostasis and the opportunities offered by combining proteomics with genetic data. As a contribution to the Human Proteome Organization (HUPO) Human Plasma Proteome Project (HPPP), we present the Human Plasma PeptideAtlas build 2021-07 that comprises 4395 canonical and 1482 additional nonredundant human proteins detected in 240 MS-based experiments. In addition, we report the new Human Extracellular Vesicle PeptideAtlas 2021-06, which comprises five studies and 2757 canonical proteins detected in extracellular vesicles circulating in blood, of which 74% (2047) are in common with the plasma PeptideAtlas. Our overview summarizes the recent advances, impactful applications, and ongoing challenges for translating plasma proteomics into utility for precision medicine.


Assuntos
Proteoma , Proteômica/tendências , Envelhecimento/genética , COVID-19/genética , Bases de Dados de Proteínas , Hemostasia/genética , Humanos , Espectrometria de Massas , Proteoma/genética
20.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1119-L1130, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34668408

RESUMO

Identifying protein biomarkers for chronic obstructive pulmonary disease (COPD) has been challenging. Most previous studies have used individual proteins or preselected protein panels measured in blood samples. Mass spectrometry proteomic studies of lung tissue have been based on small sample sizes. We used mass spectrometry proteomic approaches to discover protein biomarkers from 150 lung tissue samples representing COPD cases and controls. Top COPD-associated proteins were identified based on multiple linear regression analysis with false discovery rate (FDR) < 0.05. Correlations between pairs of COPD-associated proteins were examined. Machine learning models were also evaluated to identify potential combinations of protein biomarkers related to COPD. We identified 4,407 proteins passing quality controls. Twenty-five proteins were significantly associated with COPD at FDR < 0.05, including interleukin 33, ferritin (light chain and heavy chain), and two proteins related to caveolae (CAV1 and CAVIN1). Multiple previously reported plasma protein biomarkers for COPD were not significantly associated with proteomic analysis of COPD in lung tissue, although RAGE was borderline significant. Eleven pairs of top significant proteins were highly correlated (r > 0.8), including several strongly correlated with RAGE (EHD2 and CAVIN1). Machine learning models using Random Forests with the top 5% of protein biomarkers demonstrated reasonable accuracy (0.707) and area under the curve (0.714) for COPD prediction. Mass spectrometry-based proteomic analysis of lung tissue is a promising approach for the identification of biomarkers for COPD.


Assuntos
Biomarcadores/metabolismo , Pulmão/metabolismo , Espectrometria de Massas/métodos , Proteoma/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma/análise , Doença Pulmonar Obstrutiva Crônica/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa