Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(21): 12543-12557, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36454022

RESUMO

Several basic leucine zipper (bZIP) transcription factors have accessory motifs in their DNA-binding domains, such as the CNC motif of CNC family or the EHR motif of small Maf (sMaf) proteins. CNC family proteins heterodimerize with sMaf proteins to recognize CNC-sMaf binding DNA elements (CsMBEs) in competition with sMaf homodimers, but the functional role of the CNC motif remains elusive. In this study, we report the crystal structures of Nrf2/NFE2L2, a CNC family protein regulating anti-stress transcriptional responses, in a complex with MafG and CsMBE. The CNC motif restricts the conformations of crucial Arg residues in the basic region, which form extensive contact with the DNA backbone phosphates. Accordingly, the Nrf2-MafG heterodimer has approximately a 200-fold stronger affinity for CsMBE than canonical bZIP proteins, such as AP-1 proteins. The high DNA affinity of the CNC-sMaf heterodimer may allow it to compete with the sMaf homodimer on target genes without being perturbed by other low-affinity bZIP proteins with similar sequence specificity.


Assuntos
Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2 , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , DNA/genética
2.
J Comput Chem ; 43(20): 1362-1371, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35678372

RESUMO

Fragment molecular orbital (FMO) method is a powerful computational tool for structure-based drug design, in which protein-ligand interactions can be described by the inter-fragment interaction energy (IFIE) and its pair interaction energy decomposition analysis (PIEDA). Here, we introduced a dynamically averaged (DA) FMO-based approach in which molecular dynamics simulations were used to generate multiple protein-ligand complex structures for FMO calculations. To assess this approach, we examined the correlation between the experimental binding free energies and DA-IFIEs of six CDK2 inhibitors whose net charges are zero. The correlation between the experimental binding free energies and snapshot IFIEs for X-ray crystal structures was R2  = 0.75. Using the DA-IFIEs, the correlation significantly improved to 0.99. When an additional CDK2 inhibitor with net charge of -1 was added, the DA FMO-based scheme with the dispersion energies still achieved R2  = 0.99, whereas R2 decreased to 0.32 employing all the energy terms of PIEDA.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Quinase 2 Dependente de Ciclina , Desenho de Fármacos , Ligantes , Ligação Proteica
3.
J Chem Inf Model ; 61(2): 777-794, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33511845

RESUMO

We developed the world's first web-based public database for the storage, management, and sharing of fragment molecular orbital (FMO) calculation data sets describing the complex interactions between biomacromolecules, named FMO Database (https://drugdesign.riken.jp/FMODB/). Each entry in the database contains relevant background information on how the data was compiled as well as the total energy of each molecular system and interfragment interaction energy (IFIE) and pair interaction energy decomposition analysis (PIEDA) values. Currently, the database contains more than 13 600 FMO calculation data sets, and a comprehensive search function implemented at the front-end. The procedure for selecting target proteins, preprocessing the experimental structures, construction of the database, and details of the database front-end were described. Then, we demonstrated a use of the FMODB by comparing IFIE value distributions of hydrogen bond, ion-pair, and XH/π interactions obtained by FMO method to those by molecular mechanics approach. From the comparison, the statistical analysis of the data provided standard reference values for the three types of interactions that will be useful for determining whether each interaction in a given system is relatively strong or weak compared to the interactions contained within the data in the FMODB. In the final part, we demonstrate the use of the database to examine the contribution of halogen atoms to the binding affinity between human cathepsin L and its inhibitors. We found that the electrostatic term derived by PIEDA greatly correlated with the binding affinities of the halogen containing cathepsin L inhibitors, indicating the importance of QM calculation for quantitative analysis of halogen interactions. Thus, the FMO calculation data in FMODB will be useful for conducting statistical analyses to drug discovery, for conducting molecular recognition studies in structural biology, and for other studies involving quantum mechanics-based interactions.


Assuntos
Descoberta de Drogas , Teoria Quântica , Humanos , Simulação de Dinâmica Molecular , Proteínas , Eletricidade Estática
4.
Chem Pharm Bull (Tokyo) ; 67(5): 426-432, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31061367

RESUMO

Quantitative structure-activity relationship (QSAR) techniques, especially those that possess three-dimensional attributes, such as the comparative molecular field analysis (CoMFA), are frequently used in modern-day drug design and other related research domains. However, the requirement for accurate alignment of compounds in CoMFA increases the difficulties encountered in its use. This has led to the development of several techniques-such as VolSurf, Grid-independent descriptors (GRIND), and Anchor-GRIND-which do not require such an alignment. We propose a technique to construct the prediction model that uses molecular interaction field grid potentials as inputs to convolutional neural network. The proposed model has been found to demonstrate higher accuracy compared to the conventional descriptor-based QSAR models as well as Anchor-GRIND techniques. In addition, the method is target independent, and is capable of providing useful information regarding the importance of individual atoms constituting the compounds contained in the chemical dataset used in the proposed analysis. In view of these advantages, the proposed technique is expected to find wide applications in future drug-design operations.


Assuntos
Redes Neurais de Computação , Relação Quantitativa Estrutura-Atividade , Algoritmos , Aprendizado Profundo , Fator Xa/química , Fator Xa/metabolismo , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica
5.
Bioorg Med Chem ; 24(5): 1136-41, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26850376

RESUMO

Two classes of modified analogs of 4-(thiazol-5-yl)benzoic acid-type CK2 inhibitors were designed. The azabenzene analogs, pyridine- and pyridazine-carboxylic acid derivatives, showed potent protein kinase CK2 inhibitory activities [IC50 (CK2α)=0.014-0.017µM; IC50 (CK2α')=0.0046-0.010µM]. Introduction of a 2-halo- or 2-methoxy-benzyloxy group at the 3-position of the benzoic acid moiety maintained the potent CK2 inhibitory activities [IC50 (CK2α)=0.014-0.016µM; IC50 (CK2α')=0.0088-0.014µM] and led to antiproliferative activities [CC50 (A549)=1.5-3.3µM] three to six times higher than those of the parent compound.


Assuntos
Ácido Benzoico/química , Ácido Benzoico/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Modelos Moleculares , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/farmacologia
6.
ACS Omega ; 7(22): 18374-18381, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35694454

RESUMO

In drug discovery, the prediction of activity and absorption, distribution, metabolism, excretion, and toxicity parameters is one of the most important approaches in determining which compound to synthesize next. In recent years, prediction methods based on deep learning as well as non-deep learning approaches have been established, and a number of applications to drug discovery have been reported by various companies and organizations. In this research, we performed activity prediction using deep learning and non-deep learning methods on in-house assay data for several hundred kinases and compared and discussed the prediction results. We found that the prediction accuracy of the single-task graph neural network (GNN) model was generally lower than that of the non-deep learning model (LightGBM), but the multitask GNN model, which combined data from other kinases, comprehensively outperformed LightGBM. In addition, the extrapolative validity of the multitask model was verified by using it for prediction on known kinase ligands. We observed an overlap between characteristic protein-ligand interaction sites and the atoms that are important for prediction. By building appropriate models based on the conditions of the data set and analyzing the feature importance of the prediction results, a ligand-based prediction method may be used not only for activity prediction but also for drug design.

7.
J Cheminform ; 10(1): 4, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29411163

RESUMO

Molecular descriptors are widely employed to present molecular characteristics in cheminformatics. Various molecular-descriptor-calculation software programs have been developed. However, users of those programs must contend with several issues, including software bugs, insufficient update frequencies, and software licensing constraints. To address these issues, we propose Mordred, a developed descriptor-calculation software application that can calculate more than 1800 two- and three-dimensional descriptors. It is freely available via GitHub. Mordred can be easily installed and used in the command line interface, as a web application, or as a high-flexibility Python package on all major platforms (Windows, Linux, and macOS). Performance benchmark results show that Mordred is at least twice as fast as the well-known PaDEL-Descriptor and it can calculate descriptors for large molecules, which cannot be accomplished by other software. Owing to its good performance, convenience, number of descriptors, and a lax licensing constraint, Mordred is a promising choice of molecular descriptor calculation software that can be utilized for cheminformatics studies, such as those on quantitative structure-property relationships.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa