Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Pflugers Arch ; 476(11): 1665-1676, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39150501

RESUMO

Aging invariably decreases sensory and motor stimuli and affects several neuronal systems and their connectivity to key brain regions, including those involved in breathing. Nevertheless, further investigation is needed to fully comprehend the link between senescence and respiratory function. Here, we investigate whether a mouse model of accelerated senescence could develop central and peripheral respiratory abnormalities. Adult male Senescence Accelerated Mouse Prone 8 (SAMP8) and the control SAMR1 mice (10 months old) were used. Ventilatory parameters were assessed by whole-body plethysmography, and measurements of respiratory input impedance were performed. SAMP8 mice exhibited a reduction in the density of neurokinin-1 receptor immunoreactivity in the entire ventral respiratory column. Physiological experiments showed that SAMP8 mice exhibited a decreased tachypneic response to hypoxia (FiO2 = 0.08; 10 min) or hypercapnia (FiCO2 = 0.07; 10 min). Additionally, the ventilatory response to hypercapnia increased further due to higher tidal volume. Measurements of respiratory mechanics in SAMP8 mice showed decreased static compliance (Cstat), inspiratory capacity (IC), resistance (Rn), and elastance (H) at different ages (3, 6, and 10 months old). SAMP8 mice also have a decrease in contractile response to methacholine compared to SAMR1. In conclusion, our findings indicate that SAMP8 mice display a loss of the NK1-expressing neurons in the respiratory brainstem centers, along with impairments in both central and peripheral respiratory mechanisms. These observations suggest a potential impact on breathing in a senescence animal model.


Assuntos
Envelhecimento , Hipercapnia , Receptores da Neurocinina-1 , Animais , Camundongos , Masculino , Envelhecimento/fisiologia , Receptores da Neurocinina-1/metabolismo , Hipercapnia/fisiopatologia , Hipercapnia/metabolismo , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Mecânica Respiratória/fisiologia , Modelos Animais de Doenças , Respiração
2.
Respir Res ; 25(1): 264, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965590

RESUMO

BACKGROUND: Bronchoscopic lung volume reduction (BLVR) with one-way endobronchial valves (EBV) has better outcomes when the target lobe has poor collateral ventilation, resulting in complete lobe atelectasis. High-inspired oxygen fraction (FIO2) promotes atelectasis through faster gas absorption after airway occlusion, but its application during BLVR with EBV has been poorly understood. We aimed to investigate the real-time effects of FIO2 on regional lung volumes and regional ventilation/perfusion by electrical impedance tomography (EIT) during BLVR with EBV. METHODS: Six piglets were submitted to left lower lobe occlusion by a balloon-catheter and EBV valves with FIO2 0.5 and 1.0. Regional end-expiratory lung impedances (EELI) and regional ventilation/perfusion were monitored. Local pocket pressure measurements were obtained (balloon occlusion method). One animal underwent simultaneous acquisitions of computed tomography (CT) and EIT. Regions-of-interest (ROIs) were right and left hemithoraces. RESULTS: Following balloon occlusion, a steep decrease in left ROI-EELI with FIO2 1.0 occurred, 3-fold greater than with 0.5 (p < 0.001). Higher FIO2 also enhanced the final volume reduction (ROI-EELI) achieved by each valve (p < 0.01). CT analysis confirmed the denser atelectasis and greater volume reduction achieved by higher FIO2 (1.0) during balloon occlusion or during valve placement. CT and pocket pressure data agreed well with EIT findings, indicating greater strain redistribution with higher FIO2. CONCLUSIONS: EIT demonstrated in real-time a faster and more complete volume reduction in the occluded lung regions under high FIO2 (1.0), as compared to 0.5. Immediate changes in the ventilation and perfusion of ipsilateral non-target lung regions were also detected, providing better estimates of the full impact of each valve in place. TRIAL REGISTRATION: Not applicable.


Assuntos
Broncoscopia , Impedância Elétrica , Animais , Suínos , Broncoscopia/métodos , Pneumonectomia/métodos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Pulmão/cirurgia , Pulmão/fisiologia , Tomografia/métodos , Atelectasia Pulmonar/diagnóstico por imagem , Atelectasia Pulmonar/fisiopatologia , Medidas de Volume Pulmonar/métodos , Fatores de Tempo
3.
Cardiovasc Ultrasound ; 22(1): 4, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433236

RESUMO

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) represents a significant proportion of heart failure cases. Accurate diagnosis is challenging due to the heterogeneous nature of the disease and limitations in traditional echocardiographic parameters. MAIN BODY: This review appraises the application of Global Longitudinal Strain (GLS) and Left Atrial Strain (LAS) as echocardiographic biomarkers in the diagnosis and phenotyping of HFpEF. Strain imaging, particularly Speckle Tracking Echocardiography, offers a superior assessment of myocardial deformation, providing a more detailed insight into left heart function than traditional metrics. Normal ranges for GLS and LAS are considered, acknowledging the impact of demographic and technical factors on these values. Clinical studies have demonstrated the prognostic value of GLS and LAS in HFpEF, especially in predicting cardiovascular outcomes and distinguishing HFpEF from other causes of dyspnea. Nevertheless, the variability of strain measurements and the potential for false-negative results underline the need for careful clinical interpretation. The HFA-PEFF scoring system's integration of these biomarkers, although systematic, reveals gaps in addressing the full spectrum of HFpEF pathology. The combined use of GLS and LAS has been suggested to define HFpEF phenogroups, which could lead to more personalized treatment plans. CONCLUSION: GLS and LAS have emerged as pivotal tools in the non-invasive diagnosis and stratification of HFpEF, offering a promise for tailored therapeutic strategies. Despite their potential, a structured approach to incorporating these biomarkers into standard diagnostic workflows is essential. Future clinical guidelines should include clear directives for the combined utilization of GLS and LAS, accentuating their role in the multidimensional assessment of HFpEF.


Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/diagnóstico por imagem , Volume Sistólico , Miocárdio , Átrios do Coração , Biomarcadores
4.
J Clin Monit Comput ; 38(5): 961-979, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38954170

RESUMO

This pilot study aimed to investigate the relation between cardio-respiratory parameters derived from Central Venous Pressure (CVP) waveform and Extubation Failure (EF) in mechanically ventilated ICU patients during post-extubation period. This study also proposes a new methodology for analysing these parameters during rest/sleep periods to try to improve the identification of EF. We conducted a prospective observational study, computing CVP-derived parameters including breathing effort, spectral analyses, and entropy in twenty critically ill patients post-extubation. The Dynamic Warping Index (DWi) was calculated from the respiratory component extracted from the CVP signal to identify rest/sleep states. The obtained parameters from EF patients and patients without EF were compared both during arbitrary periods and during reduced DWi (rest/sleep). We have analysed data from twenty patients of which nine experienced EF. Our findings may suggest significantly increased respiratory effort in EF patients compared to those successfully extubated. Our study also suggests the occurrence of significant change in the frequency dispersion of the cardiac signal component. We also identified a possible improvement in the differentiation between the two groups of patients when assessed during rest/sleep states. Although with caveats regarding the sample size, the results of this pilot study may suggest that CVP-derived cardio-respiratory parameters are valuable for monitoring respiratory failure during post-extubation, which could aid in managing non-invasive interventions and possibly reduce the incidence of EF. Our findings also indicate the possible importance of considering sleep/rest state when assessing cardio-respiratory parameters, which could enhance respiratory failure detection/monitoring.


Assuntos
Extubação , Pressão Venosa Central , Unidades de Terapia Intensiva , Respiração Artificial , Sono , Humanos , Masculino , Feminino , Projetos Piloto , Pessoa de Meia-Idade , Extubação/métodos , Estudos Prospectivos , Idoso , Monitorização Fisiológica/métodos , Respiração Artificial/métodos , Estado Terminal , Descanso , Desmame do Respirador/métodos , Adulto , Insuficiência Respiratória/terapia , Insuficiência Respiratória/fisiopatologia , Respiração , Cuidados Críticos/métodos
5.
Exp Lung Res ; 48(1): 1-11, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34935573

RESUMO

Signal disruptions in small animals during the realization of the Forced Oscillation Technique are a well-known cause of data loss as it leads to non-reliable estimations of the respiratory impedance. In this work, we assessed the effects of removing the disrupted epoch when a 3-seconds input signal composed of one and a half 2-seconds full cycle is used.We tested our hypothesis in 25 SAMR1 mice under different levels of bronchoconstriction due to methacholine administration by iv bolus injections in different doses (15 animals) and by iv continuous infusion in different infusion rates (10 animals). Signal disruptions were computationally simulated as sharp drops in the pressure signal within a short timescale, and signal processing was performed using own developed algorithms.We found that the model goodness of fit worsens when averaging techniques to estimate the input respiratory impedance are not used. However, no statistically significant differences were observed in the comparison between Constant Phase Model parameters of the full 3-s signal and the 2-s non disrupted epoch in all doses or infusion rates for both methacholine delivery strategies.The proposed technique presents reliable outcomes that can reduce animal use in Forced Oscillation Technique realization.


Assuntos
Broncoconstrição , Mecânica Respiratória , Resistência das Vias Respiratórias , Animais , Cloreto de Metacolina/farmacologia , Camundongos , Testes de Função Respiratória/métodos
6.
Exp Lung Res ; 46(1-2): 23-31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31931646

RESUMO

Aim: This study aimed to analyze the Constant Phase Model (CPM) Coefficient of Determination (COD) and an index of harmonic distortion ([Formula: see text]) behavior in intravenous methacholine dose response curve. We studied the COD and [Formula: see text] behavior of Control and Lung Inflammation (OVA) groups of mice and we proposed an alternative for moments when the CPM should not be applied. Methods: 9-week female BALB/c mice were studied, 8 of the control group (23.11 ± 1.27 g) and 11 of the lung inflammation group (OVA) (21.45 ± 2.16 g). The COD values were obtained during the respiratory mechanics assessment via Forced Oscillation Technique (FOT) and the [Formula: see text] was estimated a posteriori. Both control and OVA groups were submitted to 4 doses of Methacholine (MCh) protocol. Results: A strong correlation between COD and [Formula: see text] was present at the last two doses (0.3 mg/kg: r = -0.75, p = 0.0013 and 1 mg/kg: r = -0.91; p < 0.0001) in the OVA group. Differences were found in doses of 0.3 mg/kg between control and OVA for the maximum values of Rn (Newtonian Resistance) and G (tissue viscous); and between groups at PBS and doses of 0.03, 0.1 and 0.3 mg/kg for H (Elastance). A similar behavior was observed for the analysis of Area Under the Curve with the exclusion of the 3 first measurements of each dose. However, in this scenario, the comparison with the maximum value presented a higher discriminatory capacity of the parameters associated with the parenchyma. Conclusions: During severe bronchoconstriction there is a strong negative correlation between model goodness of fit and nonlinearities levels, reinforcing that COD is a robust acceptance criterion, whether still simple and easily obtained from the ventilator. We also pointed out the area under the CPM parameters dose response curve is a useful and can be used as a complementary analysis to peak comparison following bolus injections of methacholine.


Assuntos
Cloreto de Metacolina/administração & dosagem , Cloreto de Metacolina/farmacologia , Mecânica Respiratória/efeitos dos fármacos , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Broncoconstrição/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Pulmão/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/farmacologia , Pneumonia/tratamento farmacológico , Testes de Função Respiratória/métodos
7.
Artif Organs ; 44(5): 504-512, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31715014

RESUMO

Mechanical evaluation of tracheal grafts is of great relevance for transplant research. Although there are some publications demonstrating different techniques of tracheal mechanical evaluation, there is still no definitive or preferred protocol available. Here, we present a simple image processing acquisition system that can be used for in vivo experiments. Six male Wistar rats were submitted to orotracheal intubation and a longitudinal incision was made to expose the trachea. Images of tracheae were acquired from a video camera in different scenarios of bronchoconstriction using methacholine (MCh) (Basal, PBS, MCh 30 µg/kg, MCh 300 µg/kg, and postmetabolized) during imposed-inspiration and imposed-expiration. The area variation ratio (the ratio between areas during expiration vs. inspiration) was 1.1× for the Basal group, while the ratio for MCh 300 µg/kg was 6.5×. The area variation of imaged tracheae was statistically significant at the dose of MCh 300 µg/kg for imposed-inspiration versus imposed-expiration (P = .002). Likewise, elastance data of respiratory mechanics indicated a statistically significant difference at the dose of MCh 300 µg/kg for imposed-inspiration versus imposed-expiration (P = .026). Our image processing analysis protocol presented corresponding behavior when compared to mechanical parameters of the respiratory system. In addition, our image acquisition system was able to highlight the differences between imposed-inspiration and imposed-expiration. Image analysis of the tracheal area variation seems to be in agreement with the elastance of the respiratory system. Taken together, these observations may help future studies of tracheal transplantation for in situ assessment of graft patency.


Assuntos
Broncoconstrição , Traqueia/diagnóstico por imagem , Animais , Processamento de Imagem Assistida por Computador , Masculino , Ratos Wistar , Traqueia/fisiologia
8.
Exp Physiol ; 104(5): 729-739, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30758090

RESUMO

NEW FINDINGS: What is the central question of this study? Clinical reports have described and suggested central and peripheral respiratory abnormalities in Parkinson's disease (PD) patients; however, these reports have never addressed the occurrence of these abnormalities in an animal model. What is the main finding and its importance? A mouse model of PD has reduced neurokinin-1 receptor immunoreactivity in the pre-BÓ§tzinger complex and Phox2b-expressing neurons in the retrotrapezoid nucleus. The PD mouse has impairments of respiratory frequency and the hypercapnic ventilatory response. Lung collagen deposition and ribcage stiffness appear in PD mice. ABSTRACT: Parkinson's disease (PD) is a neurodegenerative motor disorder characterized by dopaminergic deficits in the brain. Parkinson's disease patients may experience shortness of breath, dyspnoea, breathing difficulties and pneumonia, which can be linked as a cause of morbidity and mortality of those patients. The aim of the present study was to clarify whether a mouse model of PD could develop central brainstem and lung respiratory abnormalities. Adult male C57BL/6 mice received bilateral injections of 6-hydroxydopamine (10 µg µl-1 ; 0.5 µl) or vehicle into the striatum. Ventilatory parameters were assessed in the 40 days after induction of PD, by whole-body plethysmography. In addition, measurements of respiratory input impedance (closed and opened thorax) were performed. 6-Hydroxydopamine reduced the number of tyrosine hydroxylase neurons in the substantia nigra pars compacta, the density of neurokinin-1 receptor immunoreactivity in the pre-BÓ§tzinger complex and the number of Phox2b neurons in the retrotrapezoid nucleus. Physiological experiments revealed a reduction in resting respiratory frequency in PD animals, owing to an increase in expiratory time and a blunted hypercapnic ventilatory response. Measurements of respiratory input impedance showed that only PD animals with the thorax preserved had increased viscance, indicating that the ribcage could be stiff in this animal model of PD. Consistent with stiffened ribcage mechanics, abnormal collagen deposits in alveolar septa and airways were observed in PD animals. Our data showed that our mouse model of PD presented with neurodegeneration in respiratory brainstem centres and disruption of lung mechanical properties, suggesting that both central and peripheral deficiencies contribute to PD-related respiratory pathologies.


Assuntos
Doença de Parkinson Secundária/fisiopatologia , Transtornos Respiratórios/etiologia , Transtornos Respiratórios/fisiopatologia , Animais , Fenômenos Biomecânicos , Colágeno/metabolismo , Hipercapnia/fisiopatologia , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções , Neostriado , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Pletismografia , Alvéolos Pulmonares/metabolismo , Taxa Respiratória , Costelas/fisiopatologia
9.
Artif Organs ; 42(5): 476-483, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29226358

RESUMO

Tissue engineered (or bioengineered) tracheas are alternative options under investigation when the resection with end-to-end anastomosis cannot be performed. One approach to develop bioengineered tracheas is a complex process that involves the use of decellularized tissue scaffolds, followed by recellularization in custom-made tracheal bioreactors. Tracheas withstand pressure variations and their biomechanics are of great importance so that they do not collapse during respiration, although there has been no preferred method of mechanical assay of tracheas among several laboratories over the years. These methods have been performed in segments or whole tracheas and in different species of mammals. This article aims to present some methods used by different research laboratories to evaluate the mechanics of tracheal grafts and presents the importance of the tracheal biomechanics in both macro and micro scales. If bioengineered tracheas become a reality in hospitals in the next few years, the standardization of biomechanical parameters will be necessary for greater consistency of results before transplantations.


Assuntos
Órgãos Bioartificiais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Traqueia/transplante , Animais , Bioengenharia/métodos , Fenômenos Biomecânicos , Humanos , Transplante de Tecidos/métodos , Traqueia/química , Traqueia/citologia , Traqueia/fisiologia , Transplantes/química , Transplantes/citologia , Transplantes/fisiologia , Transplantes/transplante
10.
Sleep Breath ; 21(3): 631-638, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28064430

RESUMO

PURPOSE: Negative expiratory pressure (NEP) is a simple technique for the evaluation of upper airway collapsibility in patients with obstructive sleep apnea (OSA). Most studies evaluated NEP using a mouthpiece that may exclude the cephalic portion of the upper airway. We hypothesize that NEP determination is influenced by interface and position. METHODS: We evaluated patients with suspected OSA using polysomnography, NEP (-5 cmH2O in sitting and supine position with mouthpiece and nasal mask). A subgroup also underwent computed tomography (CT) of the upper airway. RESULTS: We studied a total of 86 subjects (72 male, age 46 ± 12 yrs, body mass index 30.0 ± 4.4 kg/m2, neck circumference 40.0 ± 3.5 cm, AHI 32.9 ± 26.4, range 0.5 to 122.5 events/hour). NEP was influenced by interface and position (p = 0.007), and upper airway was more collapsible with mouthpiece than with nasal mask in sitting position (p = 0.001). Position influenced NEP and was worse in supine only when evaluated by nasal mask. Expiratory resistance (R 0.2) at 0.2 s during NEP was significantly higher and independent of position with mouthpiece than with nasal mask (20.7 versus 8.6 cmH2O/L s-1, respectively, p = 0.018). NEP evaluated with nasal mask in supine position and with mouthpiece in sitting position, but not when evaluated with mouthpiece in supine position, were correlated with upper airway anatomical measurements including tongue dimensions and pharyngeal length. CONCLUSIONS: Interface and position influence NEP. NEP evaluated with nasal mask in supine position may convey more relevant information for patients under investigation for OSA than when evaluated with mouthpiece.


Assuntos
Máscaras , Respiração com Pressão Positiva , Decúbito Ventral , Apneia Obstrutiva do Sono/terapia , Feminino , Humanos , Masculino , Nariz/fisiopatologia , Faringe/fisiopatologia , Polissonografia , Língua/fisiopatologia
11.
BMC Pulm Med ; 17(1): 91, 2017 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-28623885

RESUMO

BACKGROUND: In patients with post-extubation respiratory distress, delayed reintubation may worsen clinical outcomes. Objective measures of extubation failure at the bedside are lacking, therefore clinical parameters are currently used to guide the need of reintubation. Electrical activity of the diaphragm (EAdi) provides clinicians with valuable, objective information about respiratory drive and could be used to monitor respiratory effort. CASE PRESENTATION: We describe the case of a patient with Chronic Obstructive Pulmonary Disease (COPD), from whom we recorded EAdi during four different ventilatory conditions: 1) invasive mechanical ventilation, 2) spontaneous breathing trial (SBT), 3) unassisted spontaneous breathing, and 4) Noninvasive Positive Pressure Ventilation (NPPV). The patient had been intubated due to an exacerbation of COPD, and after four days of mechanical ventilation, she passed the SBT and was extubated. Clinical signs of respiratory distress were present immediately after extubation, and EAdi increased compared to values obtained during mechanical ventilation. As we started NPPV, EAdi decreased substantially, indicating muscle unloading promoted by NPPV, and we used the EAdi signal to monitor respiratory effort during NPPV. Over the next three days, she was on NPPV for most of the time, with short periods of spontaneous breathing. EAdi remained considerably lower during NPPV than during spontaneous breathing, until the third day, when the difference was no longer clinically significant. She was then weaned from NPPV and discharged from the ICU a few days later. CONCLUSION: EAdi monitoring during NPPV provides an objective parameter of respiratory drive and respiratory muscle unloading and may be a useful tool to guide post-extubation ventilatory support. Clinical studies with continuous EAdi monitoring are necessary to clarify the meaning of its absolute values and changes over time.


Assuntos
Diafragma/fisiopatologia , Ventilação não Invasiva , Respiração com Pressão Positiva , Insuficiência Respiratória/fisiopatologia , Insuficiência Respiratória/terapia , Extubação/efeitos adversos , Feminino , Humanos , Pessoa de Meia-Idade , Monitorização Fisiológica , Doença Pulmonar Obstrutiva Crônica/terapia , Insuficiência Respiratória/etiologia
12.
BMC Pulm Med ; 17(1): 139, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29115949

RESUMO

BACKGROUND: Neurally Adjusted Ventilatory Assist (NAVA) is a proportional ventilatory mode that uses the electrical activity of the diaphragm (EAdi) to offer ventilatory assistance in proportion to patient effort. NAVA has been increasingly used for critically ill patients, but it has not been evaluated during spontaneous breathing trials (SBT). We designed a pilot trial to assess the feasibility of using NAVA during SBTs, and to compare the breathing pattern and patient-ventilator asynchrony of NAVA with Pressure Support (PSV) during SBTs. METHODS: We conducted a crossover trial in the ICU of a university hospital in Brazil and included mechanically ventilated patients considered ready to undergo an SBT on the day of the study. Patients underwent two SBTs in randomized order: 30 min in PSV of 5 cmH2O or NAVA titrated to generate equivalent peak airway pressure (Paw), with a positive end-expiratory pressure of 5 cmH2O. The ICU team, blinded to ventilatory mode, evaluated whether patients passed each SBT. We captured flow, Paw and electrical activity of the diaphragm (EAdi) from the ventilator and used it to calculate respiratory rate (RR), tidal volume (VT), and EAdi. Detection of asynchrony events used waveform analysis and we calculated the asynchrony index as the number of asynchrony events divided by the number of neural cycles. RESULTS: We included 20 patients in the study. All patients passed the SBT in PSV, and three failed the SBT in NAVA. Five patients were reintubated and the extubation failure rate was 25% (95% CI 9-49%). Respiratory parameters were similar in the two modes: VT = 6.1 (5.5-6.5) mL/Kg in NAVA vs. 5.5 (4.8-6.1) mL/Kg in PSV (p = 0.076) and RR = 27 (17-30) rpm in NAVA vs. 26 (20-30) rpm in PSV, p = 0.55. NAVA reduced AI, with a median of 11.5% (4.2-19.7) compared to 24.3% (6.3-34.3) in PSV (p = 0.033). CONCLUSIONS: NAVA reduces patient-ventilator asynchrony index and generates a respiratory pattern similar to PSV during SBTs. Patients considered ready for mechanical ventilation liberation may be submitted to an SBT in NAVA using the same objective criteria used for SBTs in PSV. TRIAL REGISTRATION: ClinicalTrials.gov ( NCT01337271 ), registered April 12, 2011.


Assuntos
Suporte Ventilatório Interativo , Respiração com Pressão Positiva , Desmame do Respirador/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Extubação , Estado Terminal , Estudos Cross-Over , Diafragma/fisiopatologia , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Taxa Respiratória , Escore Fisiológico Agudo Simplificado , Método Simples-Cego , Volume de Ventilação Pulmonar , Adulto Jovem
13.
Respir Res ; 16: 18, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25848680

RESUMO

BACKGROUND: Diesel exhaust particles (DEPs) are deposited into the respiratory tract and are thought to be a risk factor for the development of diseases of the respiratory system. In healthy individuals, the timing and mechanisms of respiratory tract injuries caused by chronic exposure to air pollution remain to be clarified. METHODS: We evaluated the effects of chronic exposure to DEP at doses below those found in a typical bus corridor in Sao Paulo (150 µg/m3). Male BALB/c mice were divided into mice receiving a nasal instillation: saline (saline; n = 30) and 30 µg/10 µL of DEP (DEP; n = 30). Nasal instillations were performed five days a week, over a period of 90 days. Bronchoalveolar lavage (BAL) was performed, and the concentrations of interleukin (IL)-4, IL-10, IL-13 and interferon-gamma (INF-γ) were determined by ELISA-immunoassay. Assessment of respiratory mechanics was performed. The gene expression of Muc5ac in lung was evaluated by RT-PCR. The presence of IL-13, MAC2+ macrophages, CD3+, CD4+, CD8+ T cells and CD20+ B cells in tissues was analysed by immunohistochemistry. Bronchial thickness and the collagen/elastic fibers density were evaluated by morphometry. We measured the mean linear intercept (Lm), a measure of alveolar distension, and the mean airspace diameter (D0) and statistical distribution (D2). RESULTS: DEP decreased IFN-γ levels in BAL (p = 0.03), but did not significantly alter IL-4, IL-10 and IL-13 levels. MAC2+ macrophage, CD4+ T cell and CD20+ B cell numbers were not altered; however, numbers of CD3+ T cells (p ≤ 0.001) and CD8+ T cells (p ≤ 0.001) increased in the parenchyma. Although IL-13 (p = 0.008) expression decreased in the bronchiolar epithelium, Muc5ac gene expression was not altered in the lung of DEP-exposed animals. Although respiratory mechanics, elastic and collagen density were not modified, the mean linear intercept (Lm) was increased in the DEP-exposed animals (p ≤ 0.001), and the index D2 was statistically different (p = 0.038) from the control animals. CONCLUSION: Our data suggest that nasal instillation of low doses of DEP over a period of 90 days results in alveolar enlargement in the pulmonary parenchyma of healthy mice.


Assuntos
Poluentes Atmosféricos/toxicidade , Pneumonia/induzido quimicamente , Alvéolos Pulmonares/efeitos dos fármacos , Emissões de Veículos/toxicidade , Animais , Brasil , Líquido da Lavagem Broncoalveolar/imunologia , Colágeno/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Tecido Elástico/metabolismo , Mediadores da Inflamação/metabolismo , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Mucina-5AC/genética , Mucina-5AC/metabolismo , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/fisiopatologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologia , RNA Mensageiro/metabolismo , Mecânica Respiratória/efeitos dos fármacos , Fatores de Tempo
14.
Sci Rep ; 14(1): 22570, 2024 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-39343813

RESUMO

Although there has been an increase in bench test evaluation of mechanical ventilators in recent years, a publication gap remains in assessing Pressure Control Continuous Mandatory Ventilation Modes with a set point targeting scheme PC-CMVs. This study evaluates the operational variability in PC-CMVs of eleven transport and emergency ventilators used in ICU units in Brazil during the COVID-19 pandemic. The assessment involved a comprehensive set of test scenarios derived from existing literature and the NBR ISO 80601-2-12:2014 standard. Nine parameters were computed for five consecutive breaths, offering a comprehensive characterization of pressure and flow waveforms. Most ventilators had Inspiratory pressure and PEEP values that fell outside of the tolerance ranges. Notably, three mechanical ventilators failed to reach the target pressures within the specified inspiratory times during test scenarios with a higher time constant (τ). We observed significant differences among emergency and transport ventilators in all assessed parameters, indicating a performance difference in PC-CMVs modes. The current results might help clinicians determine which ventilator models are suitable for specific clinical situations, particularly when unfavorable circumstances compel doctors to use ventilators that may not provide adequate support for patients in intensive care units.


Assuntos
COVID-19 , Unidades de Terapia Intensiva , Ventiladores Mecânicos , Ventiladores Mecânicos/provisão & distribuição , Humanos , COVID-19/terapia , COVID-19/epidemiologia , SARS-CoV-2 , Brasil , Respiração com Pressão Positiva/métodos , Respiração com Pressão Positiva/instrumentação , Respiração Artificial/métodos , Respiração Artificial/instrumentação , Pandemias
15.
Int J Cardiovasc Imaging ; 39(7): 1239-1250, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36997835

RESUMO

BACKGROUND: Heart Failure with Preserved Ejection Fraction (HFpEF) is a syndrome characterized by different degrees of exercise intolerance, which leads to poor quality of life and prognosis. Recently, the European score (HFA-PEFF) was proposed to standardize the diagnosis of HFpEF. Even though Global Longitudinal Strain (GLS) is a component of HFA-PEFF, the role of other strain parameters, such as Mechanical Dispersion (MD), has yet to be studied. In this study, we aimed to compare MD and other features from the HFA-PEFF according to their association with exercise capacity in an outpatient population of subjects at risk or suspected HFpEF. METHODS: This is a single-center cross-sectional study performed in an outpatient population of 144 subjects with a median age of 57 years, 58% females, referred to the Echocardiography and Cardiopulmonary Exercise Test to investigate HFpEF. RESULTS: MD had a higher correlation to Peak VO2 (r=-0.43) when compared to GLS (r=-0.26), MD presented a significant correlation to Ventilatory Anaerobic Threshold (VAT) (r=-0.20; p = 0.04), while GLS showed no correlation (r=-0.14; p = 0.15). Neither MD nor GLS showed a correlation with the time to recover VO2 after exercise (T1/2). In Receiver Operator Characteristic (ROC) analysis, MD presented superior performance to GLS to predict Peak VO2 (AUC: 0.77 vs. 0.62), VAT (AUC: 0.61 vs. 0.57), and T1/2 (AUC: 0.64 vs. 0.57). Adding MD to HFA-PEFF improved the model performance (AUC from 0.77 to 0.81). CONCLUSION: MD presented a higher association with Peak VO2 when compared to GLS and most features from the HFA-PEFF. Adding MD to the HFA-PEFF improved the model performance.


Assuntos
Insuficiência Cardíaca , Feminino , Humanos , Pessoa de Meia-Idade , Masculino , Insuficiência Cardíaca/diagnóstico por imagem , Volume Sistólico , Estudos Transversais , Tolerância ao Exercício , Qualidade de Vida , Valor Preditivo dos Testes , Ecocardiografia , Função Ventricular Esquerda
16.
Int J Cardiol ; 380: 20-27, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36958396

RESUMO

BACKGROUND: Provocative maneuvers have the potential to overcome the low sensitivity of resting echocardiography and biomarkers in the detection of heart failure with preserved ejection fraction (HFpEF). We investigate the mechanical response of the left ventricle to an afterload challenge in patients with preclinical and early-stage HFpEF (es-HFpEF). METHODS: Three groups of patients (non-HFpEF - n = 42, pre-HFpEF - n = 43, and es-HFpEF - n = 39) underwent echocardiography at rest and during an afterload challenge induced by handgrip maneuver combined with pneumatic constriction of limbs. RESULTS: Patients in the non-HF group displayed a median ΔLPSS = -4% (IQR: -10%, +2%), LPSS rest<16% in 3/42(7%) and LPSS stress<16% in 6/43(14%). Subjects in the pre-HFpEF group displayed median ΔLPSS = -3% (IQR: -10%, +5%) LPSS rest<16% in 13/43(30%) and LPSS stress<16% in 19/43 (44%). 11/43 (25%) subjects in this group increased at least one absolute point in LPSS during stress. Patients in es-HFpEF group displayed a median ΔLPSS = -10% (IQR: -18%, -1%), LPSS rest<16% in 15/39(38%) and LPSS stress<16% in 25/39(64%). Changes in LPSS (ΔLPSS) were significantly greater in es-HFpEF than pre-HFpEF (p = 0.022). In multivariate analysis, this group effect was maintained after adjustment of the LPSS for systolic blood pressure, use of ß-blockers, LV mass, RWT, age, and sex. CONCLUSION: Our data suggest that patients with HFpEF have a marked decrease in peak strain during acute pressure overload. Longitudinal studies are needed to test and compare the clinical impact of each pattern in early and long-term follow-ups.


Assuntos
Força da Mão , Insuficiência Cardíaca , Humanos , Volume Sistólico/fisiologia , Insuficiência Cardíaca/diagnóstico por imagem , Ecocardiografia , Ventrículos do Coração/diagnóstico por imagem , Função Ventricular Esquerda/fisiologia
17.
J Neuroendocrinol ; : e13254, 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36964750

RESUMO

Growth hormone (GH) receptor (GHR) is abundantly expressed in neurons that co-release the agouti-related protein (AgRP) and neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH). Since ARHAgRP/NPY neurons regulate several hypothalamic-pituitary-endocrine axes, this neuronal population possibly modulates GH secretion via a negative feedback loop, particularly during food restriction, when ARHAgRP/NPY neurons are highly active. The present study aims to determine the importance of GHR signaling in ARHAgRP/NPY neurons on the pattern of GH secretion in fed and food-deprived male mice. Additionally, we compared the effect of two distinct situations of food deprivation: 16 h of fasting or four days of food restriction (40% of usual food intake). Overnight fasting strongly suppressed both basal and pulsatile GH secretion. Animals lacking GHR in ARHAgRP/NPY neurons (AgRP∆GHR mice) did not exhibit differences in GH secretion either in the fed or fasted state, compared to control mice. In contrast, four days of food restriction increased GH pulse frequency, basal GH secretion, and pulse irregularity/complexity (measured by sample entropy), whereas pulsatile GH secretion was not affected in both control and AgRP∆GHR mice. Hypothalamic Ghrh mRNA levels were unaffected by fasting or food restriction, but Sst expression increased in acutely fasted mice, but decreased after prolonged food restriction in both control and AgRP∆GHR mice. Our findings indicate that short-term fasting and prolonged food restriction differentially affect the pattern of GH secretion, independently of GHR signaling in ARHAgRP/NPY neurons.

18.
Arch Phys Med Rehabil ; 93(4): 571-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22464088

RESUMO

OBJECTIVE: To investigate the effects of a diaphragmatic breathing training program (DBTP) on thoracoabdominal motion and functional capacity in patients with chronic obstructive pulmonary disease. DESIGN: A prospective, randomized controlled trial. SETTING: Academic medical center. PARTICIPANTS: Subjects (N=30; forced expiratory volume in 1s, 42%±13% predicted) were randomly allocated to either a training group (TG) or a control group (CG). INTERVENTIONS: Subjects in the TG completed a 4-week supervised DBTP (3 individualized weekly sessions), while those in the CG received their usual care. MAIN OUTCOME MEASURES: Effectiveness was assessed by amplitude of the rib cage to abdominal motion ratio (RC/ABD ratio) (primary outcome) and diaphragmatic mobility (secondary outcome). The RC/ABD ratio was measured using respiratory inductive plethysmography during voluntary diaphragmatic breathing and natural breathing. Diaphragmatic mobility was measured by ultrasonography. A 6-minute walk test and health-related quality of life were also evaluated. RESULTS: Immediately after the 4-week DBTP, the TG showed a greater abdominal motion during natural breathing quantified by a reduction in the RC/ABD ratio when compared with the CG (F=8.66; P<.001). Abdominal motion during voluntary diaphragmatic breathing after the intervention was also greater in the TG than in the CG (F=4.11; P<.05). The TG showed greater diaphragmatic mobility after the 4-week DBTP than did the CG (F=15.08; P<.001). An improvement in the 6-minute walk test and in health-related quality of life was also observed in the TG. CONCLUSIONS: DBTP for patients with chronic obstructive pulmonary disease induced increased diaphragm participation during natural breathing, resulting in an improvement in functional capacity.


Assuntos
Exercícios Respiratórios , Diafragma/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/reabilitação , Músculos Abdominais/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Distribuição de Qui-Quadrado , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Qualidade de Vida , Resultado do Tratamento
19.
Front Physiol ; 13: 817263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910573

RESUMO

Lung physiology research advanced significantly over the last 100 years. Respiratory mechanics applied to animal models of lung disease extended the knowledge of the workings of respiratory system. In human research, a better understanding of respiratory mechanics has contributed to development of mechanical ventilators. In this review, we explore the use of respiratory mechanics in basic science to investigate asthma and chronic obstructive pulmonary disease (COPD). We also discuss the use of lung mechanics in clinical care and its role on the development of modern mechanical ventilators. Additionally, we analyse some bench-developed technologies that are not in widespread use in the present but can become part of the clinical arsenal in the future. Finally, we explore some of the difficult questions that intensive care doctors still face when managing respiratory failure. Bringing back these questions to bench can help to solve them. Interaction between basic and translational science and human subject investigation can be very rewarding, as in the conceptualization of "Lung Protective Ventilation" principles. We expect this interaction to expand further generating new treatments and managing strategies for patients with respiratory disease.

20.
Respir Physiol Neurobiol ; 292: 103705, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34062282

RESUMO

Balb/c mice respiratory mechanics was studied in two intravenous methacholine (MCh) protocols: bolus and continuous infusion. The Constant Phase Model (CPM) was used in this study. The harmonic distortion index (kd) was used to assess the respiratory system nonlinearity. The analysis of variance showed difference between groups (OVA vs control) and among doses for both protocols. Bolus protocol posttest: there was a difference between OVA and control at 0.3 and 1 mg/kg doses (p<0.0001 and p<0.001) for Rn. Infusion: there was a difference between OVA and control at 192 µg.kg-1.min-1 dose for Rn, G and H, (p<0.01; p<0.001; p<0.001). An increment was found in kd values near to the observed peak values in bolus protocol. The bolus protocol could better differentiate inflamed and non-inflamed airway resistance, whereas the differences between OVA and control in continuous infusion protocol were associated to airway- and, mainly, parenchyma-related parameters. Moreover, the bolus protocol presented a higher nonlinear degree compared to the infusion protocol.


Assuntos
Asma/induzido quimicamente , Broncoconstritores/administração & dosagem , Cloreto de Metacolina/administração & dosagem , Modelos Teóricos , Mecânica Respiratória/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa