Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 32(5): 1194-203, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22383697

RESUMO

OBJECTIVE: The comorbidity of excess salt and elevated plasma aldosterone has deleterious effects in cardiovascular disease. We evaluated the mechanisms behind the paradoxical increase in aldosterone biosynthesis in relation to dietary intake of salt. METHODS AND RESULTS: Dahl salt-sensitive (Dahl-S) and salt-resistant (Dahl-R) rats were fed a high-salt diet, and plasma and tissue levels of aldosterone in the adrenal gland and heart were quantified by liquid chromatography-electrospray ionization-tandem mass spectrometry. In Dahl-S rats, we found that the delayed and paradoxical increase in aldosterone biosynthesis after the initial and appropriate response to high salt. The late rise in aldosterone biosynthesis was accompanied by upregulation of CYP11B2 expression in the zona glomerulosa and increased adrenal angiotensin II levels and renin-angiotensin system components. It preceded the appearance of left ventricular systolic dysfunction and renal insufficiency. Blockade of angiotensin AT(1) receptors reversed the paradoxical increase in aldosterone biosynthesis. In contrast, Dahl-R rats maintained the initial suppression of aldosterone biosynthesis. Aldosterone levels in the heart closely paralleled those in the plasma and adrenal gland and disappeared after bilateral adrenalectomy. CONCLUSIONS: Chronic salt overload in Dahl-S rats stimulates aberrant aldosterone production via activation of the local renin-angiotensin system in the adrenal gland, thereby creating the comorbidity of excess salt and elevated plasma aldosterone.


Assuntos
Aldosterona/biossíntese , Hipertensão/metabolismo , Sistema Renina-Angiotensina/fisiologia , Sódio na Dieta/efeitos adversos , Glândulas Suprarrenais/metabolismo , Animais , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Imuno-Histoquímica , Masculino , Miocárdio/metabolismo , Ratos , Ratos Endogâmicos Dahl , Sistema Renina-Angiotensina/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray
2.
Circ Res ; 105(11): 1118-27, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19815821

RESUMO

RATIONALE: Aldehyde accumulation is regarded as a pathognomonic feature of oxidative stress-associated cardiovascular disease. OBJECTIVE: We investigated how the heart compensates for the accelerated accumulation of aldehydes. METHODS AND RESULTS: Aldehyde dehydrogenase 2 (ALDH2) has a major role in aldehyde detoxification in the mitochondria, a major source of aldehydes. Transgenic (Tg) mice carrying an Aldh2 gene with a single nucleotide polymorphism (Aldh2*2) were developed. This polymorphism has a dominant-negative effect and the Tg mice exhibited impaired ALDH activity against a broad range of aldehydes. Despite a shift toward the oxidative state in mitochondrial matrices, Aldh2*2 Tg hearts displayed normal left ventricular function by echocardiography and, because of metabolic remodeling, an unexpected tolerance to oxidative stress induced by ischemia/reperfusion injury. Mitochondrial aldehyde stress stimulated eukaryotic translation initiation factor 2alpha phosphorylation. Subsequent translational and transcriptional activation of activating transcription factor-4 promoted the expression of enzymes involved in amino acid biosynthesis and transport, ultimately providing precursor amino acids for glutathione biosynthesis. Intracellular glutathione levels were increased 1.37-fold in Aldh2*2 Tg hearts compared with wild-type controls. Heterozygous knockout of Atf4 blunted the increase in intracellular glutathione levels in Aldh2*2 Tg hearts, thereby attenuating the oxidative stress-resistant phenotype. Furthermore, glycolysis and NADPH generation via the pentose phosphate pathway were activated in Aldh2*2 Tg hearts. (NADPH is required for the recycling of oxidized glutathione.) CONCLUSIONS: The findings of the present study indicate that mitochondrial aldehyde stress in the heart induces metabolic remodeling, leading to activation of the glutathione-redox cycle, which confers resistance against acute oxidative stress induced by ischemia/reperfusion.


Assuntos
Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Aldeídos/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo/fisiologia , Fator 4 Ativador da Transcrição/metabolismo , Adaptação Fisiológica/fisiologia , Aldeído-Desidrogenase Mitocondrial , Animais , Modelos Animais de Doenças , Ecocardiografia , Ativação Enzimática/fisiologia , Indução Enzimática/fisiologia , Glucose/metabolismo , Glutationa/metabolismo , Metaboloma/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/fisiologia , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Via de Pentose Fosfato/fisiologia , Transcrição Gênica/fisiologia
3.
J Mol Cell Cardiol ; 49(4): 576-86, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20685357

RESUMO

Reactive oxygen species (ROS) attack polyunsaturated fatty acids of the membrane and trigger lipid peroxidation, which results in the generation of alpha,beta-unsaturated aldehydes, such as 4-hydroxy-2-nonenal (4-HNE). There is compelling evidence that high concentrations of aldehydes are responsible for much of the damage elicited by cardiac ischemia-reperfusion injury, while sublethal concentrations of aldehydes stimulate stress resistance pathways, to achieve cardioprotection. We investigated the mechanism of cardioprotection mediated by 4-HNE. For cultured cardiomyocytes, 4-HNE was cytotoxic at higher concentrations (>or=20 microM) but had no appreciable cytotoxicity at lower concentrations. Notably, a sublethal concentration (5muM) of 4-HNE primed cardiomyocytes to become resistant to cytotoxic concentrations of 4-HNE. 4-HNE induced nuclear translocation of transcription factor NF-E2-related factor 2 (Nrf2), and enhanced the expression of gamma-glutamylcysteine ligase (GCL) and the core subunit of the Xc(-) high-affinity cystine transporter (xCT), thereby increasing 1.45-fold the intracellular GSH levels. Cardiomyocytes treated with either Nrf2-specific siRNA or the GCL inhibitor l-buthionine sulfoximine (BSO) were less tolerant to 4-HNE. Moreover, the cardioprotective effect of 4-HNE pretreatment against subsequent glucose-free anoxia followed by reoxygenation was completely abolished in these cells. Intravenous administration of 4-HNE (4 mg/kg) activated Nrf2 in the heart and increased the intramyocardial GSH content, and consequently improved the functional recovery of the left ventricle following ischemia-reperfusion in Langendorff-perfused hearts. This cardioprotective effect of 4-HNE was not observed for Nrf2-knockout mice. In summary, 4-HNE activates Nrf2-mediated gene expression and stimulates GSH biosynthesis, thereby conferring on cardiomyocytes protection against ischemia-reperfusion injury.


Assuntos
Aldeídos/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Aldeídos/farmacologia , Animais , Western Blotting , Morte Celular/efeitos dos fármacos , Células Cultivadas , Glutationa/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
4.
J Clin Invest ; 119(6): 1477-88, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19451694

RESUMO

Lipocalin-type prostaglandin D synthase (L-PGDS), which was originally identified as an enzyme responsible for PGD2 biosynthesis in the brain, is highly expressed in the myocardium, including in cardiomyocytes. However, the factors that control expression of the gene encoding L-PGDS and the pathophysiologic role of L-PGDS in cardiomyocytes are poorly understood. In the present study, we demonstrate that glucocorticoids, which act as repressors of prostaglandin biosynthesis in most cell types, upregulated the expression of L-PGDS together with cytosolic calcium-dependent phospholipase A2 and COX2 via the glucocorticoid receptor (GR) in rat cardiomyocytes. Accordingly, PGD2 was the most prominently induced prostaglandin in vivo in mouse hearts and in vitro in cultured rat cardiomyocytes after exposure to GR-selective agonists. In isolated Langendorff-perfused mouse hearts, dexamethasone alleviated ischemia/reperfusion injury. This cardioprotective effect was completely abrogated by either pharmacologic inhibition of COX2 or disruption of the gene encoding L-PGDS. In in vivo ischemia/reperfusion experiments, dexamethasone reduced infarct size in wild-type mice. This cardioprotective effect of dexamethasone was markedly reduced in L-PGDS-deficient mice. In cultured rat cardiomyocytes, PGD2 protected against cell death induced by anoxia/reoxygenation via the D-type prostanoid receptor and the ERK1/2-mediated pathway. Taken together, these results suggest what we believe to be a novel interaction between glucocorticoid-GR signaling and the cardiomyocyte survival pathway mediated by the arachidonic acid cascade.


Assuntos
Glucocorticoides/farmacologia , Coração/efeitos dos fármacos , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Prostaglandina D2/biossíntese , Animais , Células Cultivadas , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Ativação Enzimática , Hipóxia/genética , Hipóxia/metabolismo , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Oxigênio/metabolismo , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa