Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35177476

RESUMO

Cancer metabolism, including in mitochondria, is a disease hallmark and therapeutic target, but its regulation is poorly understood. Here, we show that many human tumors have heterogeneous and often reduced levels of Mic60, or Mitofilin, an essential scaffold of mitochondrial structure. Despite a catastrophic collapse of mitochondrial integrity, loss of bioenergetics, and oxidative damage, tumors with Mic60 depletion slow down cell proliferation, evade cell death, and activate a nuclear gene expression program of innate immunity and cytokine/chemokine signaling. In turn, this induces epithelial-mesenchymal transition (EMT), activates tumor cell movements through exaggerated mitochondrial dynamics, and promotes metastatic dissemination in vivo. In a small-molecule drug screen, compensatory activation of stress response (GCN2) and survival (Akt) signaling maintains the viability of Mic60-low tumors and provides a selective therapeutic vulnerability. These data demonstrate that acutely damaged, "ghost" mitochondria drive tumor progression and expose an actionable therapeutic target in metastasis-prone cancers.


Assuntos
Mitocôndrias/fisiologia , Metástase Neoplásica/fisiopatologia , Neoplasias/genética , Morte Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Invasividade Neoplásica/genética , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Processos Neoplásicos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio , Transdução de Sinais
2.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670622

RESUMO

The Hippo pathway is involved in human tumorigenesis and tissue repair. Here, we investigated the Hippo coactivator Yes-associated protein 1 (YAP1) and the kinase large tumor suppressor 1/2 (LATS1/2) in tumors of the parathyroid glands, which are almost invariably associated with primary hyperparathyroidism. Compared with normal parathyroid glands, parathyroid adenomas (PAds) and carcinomas show variably but reduced nuclear YAP1 expression. The kinase LATS1/2, which phosphorylates YAP1 thus promoting its degradation, was also variably reduced in PAds. Further, YAP1 silencing reduces the expression of the key parathyroid oncosuppressor multiple endocrine neoplasia type 1(MEN1), while MEN1 silencing increases YAP1 expression. Treatment of patient-derived PAds-primary cell cultures and Human embryonic kidney 293A (HEK293A) cells expressing the calcium-sensing receptor (CASR) with the CASR agonist R568 induces YAP1 nuclear accumulation. This effect was prevented by the incubation of the cells with RhoA/Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitors Y27632 and H1152. Lastly, CASR activation increased the expression of the YAP1 gene targets CYR61, CTGF, and WNT5A, and this effect was blunted by YAP1 silencing. Concluding, here we provide preliminary evidence of the involvement of the Hippo pathway in human tumor parathyroid cells and of the existence of a CASR-ROCK-YAP1 axis. We propose a tumor suppressor role for YAP1 and LATS1/2 in parathyroid tumors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Glândulas Paratireoides/metabolismo , Neoplasias das Paratireoides/genética , Receptores de Detecção de Cálcio/genética , Fatores de Transcrição/genética , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Amidas/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Neoplasias das Paratireoides/metabolismo , Fenetilaminas/farmacologia , Propilaminas/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Piridinas/farmacologia , Interferência de RNA , Receptores de Detecção de Cálcio/agonistas , Receptores de Detecção de Cálcio/metabolismo , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
3.
Cancers (Basel) ; 15(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046805

RESUMO

Distant metastasis occurs when cancer cells adapt to a tissue microenvironment that is different from the primary organ. This process requires genetic and epigenetic changes in cancer cells and the concomitant modification of the tumor stroma to facilitate invasion by metastatic cells. In this study, we analyzed differences in the epigenome of brain metastasis from the colon (n = 4) and lung (n = 14) cancer and we compared these signatures with those found in primary tumors. Results show that CRC tumors showed a high degree of genome-wide methylation compared to lung cancers. Further, brain metastasis from lung cancer deeply activates neural signatures able to modify the brain microenvironment favoring tumor cells adaptation. At the protein level, brain metastases from lung cancer show expression of the neural/glial marker Nestin. On the other hand, colon brain metastases show activation of metabolic signaling. These signatures are specific for metastatic tumors since primary cancers did not show such epigenetic derangements. In conclusion, our data shed light on the epi/molecular mechanisms that colon and lung cancers adopt to thrive in the brain environment.

4.
Front Endocrinol (Lausanne) ; 13: 869006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586620

RESUMO

Long non-coding RNAs (lncRNAs) are an important class of epigenetic regulators involved in both physiological processes and cancer development. Preliminary evidence suggested that lncRNAs could act as accurate prognostic and diagnostic biomarkers. Parathyroid cancer is a rare endocrine neoplasia, whose management represents a clinical challenge due to the lack of accurate molecular biomarkers. Our previous findings showed that human parathyroid tumors are characterized by a different lncRNAs signature, suggesting heterogeneity through the different histotypes. Particularly, we found that the lncRNA BC200/BCYRN1 could represent a candidate biomarker for parathyroid carcinomas (PCas). Here we aimed to extend our preliminary data evaluating whether BC200 could be an accurate non-invasive biomarker of PCas to support the clinical management of patients affected by parathyroid tumors at diagnosis, prognosis and follow-up. To provide a non-invasive point-of-care for parathyroid carcinoma diagnosis and follow-up, we analyzed BC200 expression in patients' serum through digital PCR. Our results show that BC200 counts are higher in serum from patients harboring PCa (n=4) compared to patients with parathyroid adenoma (PAd; n=27). Further, in PAd patients circulating BC200 levels are positively correlated with serum total calcium. Then, we found that BC200 is overexpressed in metastatic PCas (n=4) compared to non-metastatic ones (n=9). Finally, the lncRNA expression in PCa patients' serum drops are reduced after parathyroidectomy, suggesting its possible use in the post-operative setting for patients follow-up. Overall, these findings extend the knowledge on BC200 in parathyroid tumors, supporting its role as a useful biomarker for management of PCa.


Assuntos
Neoplasias das Paratireoides , RNA Longo não Codificante , Biomarcadores , Proliferação de Células/genética , Humanos , Neoplasias das Paratireoides/sangue , Neoplasias das Paratireoides/diagnóstico , Neoplasias das Paratireoides/genética , RNA Longo não Codificante/sangue , RNA Longo não Codificante/genética
5.
PLoS One ; 17(10): e0273520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36223343

RESUMO

Changes in metabolism are a hallmark of cancer, but molecular signatures of altered bioenergetics to aid in clinical decision-making do not currently exist. We recently identified a group of human tumors with constitutively reduced expression of the mitochondrial structural protein, Mic60, also called mitofilin or inner membrane mitochondrial protein (IMMT). These Mic60-low tumors exhibit severe loss of mitochondrial fitness, paradoxically accompanied by increased metastatic propensity and upregulation of a unique transcriptome of Interferon (IFN) signaling and Senescence-Associated Secretory Phenotype (SASP). Here, we show that an optimized, 11-gene signature of Mic60-low tumors is differentially expressed in multiple malignancies, compared to normal tissues, and correlates with poor patient outcome. When analyzed in three independent patient cohorts of pancreatic ductal adenocarcinoma (PDAC), the Mic60-low gene signature was associated with aggressive disease variants, local inflammation, FOLFIRINOX failure and shortened survival, independently of age, gender, or stage. Therefore, the 11-gene Mic60-low signature may provide an easily accessible molecular tool to stratify patient risk in PDAC and potentially other malignancies.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Ductal Pancreático/patologia , Humanos , Interferons , Proteínas Mitocondriais/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
6.
Biomedicines ; 9(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199594

RESUMO

Tumors of the parathyroid glands are the second most common endocrine neoplasia. Epigenetic studies revealed an embryonic signature involved in parathyroid tumorigenesis. Here, we investigated the expression of the stem core genes SOX2, POU5F1/OCT4, and NANOG. Rare cells within normal parathyroid glands expressed POU5F1/OCT4 and NANOG, while SOX2 was undetectable. Nuclear SOX2 expression was detectable in 18% of parathyroid adenomas (PAds, n = 34) involving 5-30% of cells, while OCT4 and NANOG were expressed at the nuclear level in a more consistent subset of PAds involving 15-40% of cells. Most parathyroid carcinomas expressed the core stem genes. SOX2-expressing cells co-expressed parathormone (PTH). In PAds-derived primary cultures, silencing of the tumor suppressor gene MEN1 induced the expression of SOX2, likely through a MEN1/HAR1B/SOX2 axis, while calcium-sensing receptor activation increased SOX2 mRNA levels through YAP1 activation. In addition, inducing nuclear ß-catenin accumulation in PAds-derived primary cultures by short-term incubation with lithium chloride (LiCl), SOX2 and POU5F1/OCT4 expression levels increased, while NANOG transcripts were reduced, and LiCl long-term incubation induced an opposite pattern of gene expression. In conclusion, detection of the core stem genes in parathyroid tumors supports their embryogenic signature, which is modulated by crucial genes involved in parathyroid tumorigenesis.

7.
Endocr Relat Cancer ; 28(1): 53-63, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33151903

RESUMO

Tumors of the parathyroid glands are highly vascularized and display a microRNA (miRNA) profile divergent from normal parathyroid glands (PaNs). Angiogenic miRNAs, namely miR-126-3p, miR-126-5p, and miR-296-5p, have been found downregulated in parathyroid tumors. Here, we show that miR-126-3p expression levels are reduced in parathyroid adenomas (PAds; n = 12) compared with PaNs (n = 4). In situ hybridization (ISH) of miR-126-3p and miR-296-5p in 10 PAds show that miR-126-3p is expressed by endothelial cells lining the walls of great vessels and by cells within the thin stroma surrounding acinar structures. At variance, miR-296-5p was detectable in most PAd epithelial cells. Combining ISH for miR-126-3p with immunohistochemistry for the endothelial and mesenchymal markers CD34, CD31 and α-smooth muscle actin (αSMA), we could identify that miR-126-3p is localized in the αSMA-positive thin stroma. Further, miR-126-3p-expressing cells are enriched in the CD34-positive stromal cells surrounding epithelial cell acinar structures, a cellular pattern consistent with tumor-associated myofibroblasts (TAMs). In line with this, CD34-positive cells, sorted by FACS from PAds tissues, express miR-126-3p at higher levels than CD34-negative cells, suggesting that miR-126-3p downregulation promotes the endothelial-to-αSMA+ mesenchymal transition. In human mesenchymal stem cells derived from bone marrow (hBM-MSCs), a model of TAMs, the co-culture with PAds-derived cells for 5 days decreases miR-126-3p, while it increases VEGFA expression. At variance, adrenomedullin (ADM) expression is unaffected. Finally, overexpression of the miR-126-3p mimic in both hBM-MSCs and PAds-derived explants downregulates VEGFA expression levels. In conclusion, miR-126-3p is expressed by both endothelial cells and TAMs in PAds, and its downregulation promotes neoangiogenesis, possibly through VEGFA overexpression.


Assuntos
MicroRNAs/metabolismo , Neoplasias das Paratireoides/irrigação sanguínea , Idoso , Feminino , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neoplasias das Paratireoides/genética , Neoplasias das Paratireoides/metabolismo
8.
Biomolecules ; 11(11)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34827619

RESUMO

Traditionally, Cornelia de Lange Syndrome (CdLS) is considered a cohesinopathy caused by constitutive mutations in cohesin complex genes. Cohesin is a major regulator of chromatin architecture, including the formation of chromatin loops at the imprinted IGF2/H19 domain. We used 3C analysis on lymphoblastoid cells from CdLS patients carrying mutations in NIPBL and SMC1A genes to explore 3D chromatin structure of the IGF2/H19 locus and evaluate the influence of cohesin alterations in chromatin architecture. We also assessed quantitative expression of imprinted loci and WNT pathway genes, together with DMR methylation status of the imprinted genes. A general impairment of chromatin architecture and the emergence of new interactions were found. Moreover, imprinting alterations also involved the expression and methylation levels of imprinted genes, suggesting an association among cohesin genetic defects, chromatin architecture impairment, and imprinting network alteration. The WNT pathway resulted dysregulated: canonical WNT, cell cycle, and WNT signal negative regulation were the most significantly affected subpathways. Among the deregulated pathway nodes, the key node of the frizzled receptors was repressed. Our study provides new evidence that mutations in genes of the cohesin complex have effects on the chromatin architecture and epigenetic stability of genes commonly regulated by high order chromatin structure.


Assuntos
Síndrome de Cornélia de Lange , Proteínas de Ciclo Celular , Linhagem Celular , Cromatina , Proteínas Cromossômicas não Histona , Fator de Crescimento Insulin-Like II , Mutação , Coesinas
9.
J Bone Miner Res ; 35(12): 2423-2431, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32780442

RESUMO

A role for long non-coding RNAs (lncRNAs) in endocrine cancer pathogenesis is emerging. However, knowledge regarding their expression pattern, correlation with known genetic defects, and clinical implications in parathyroid tumors is still unclear. Here, we profiled 90 known lncRNAs in a first series of normal (PaN = 2), adenomatous (PAd = 12), and carcinomatous (PCa = 4) parathyroid glands and we confirmed deregulation of 11 lncRNAs using an independent cohort of patients (PaN = 4; PAd = 26; PCa = 9). Expression of lncRNAs was correlated with cytogenetic aberrations, status of genes multiple endocrine neoplasia 1 (MEN1) and cell division cycle 73 (CDC73), or clinical features. Globally, lncRNAs discriminate according to tissue histology. BC200 consistently identifies parathyroid cancers from adenomas and atypical adenomas. Loss-of-heterozygosity (LOH) at chromosomes 1, 11, 15, 21, and 22 significantly impacts expression of lncRNAs in PAds. Silencing of the key parathyroid gene MEN1 modulates the expression of six lncRNAs in primary PAds-derived cultures. Analogous levels of lncRNAs are measured in PAds with the mutation in the MEN1 gene compared with PAds with wild-type MEN1. Similarly, carcinomas with mutated CDC73 differ from PCas with wild-type protein in terms of expression of lncRNAs. PCas harboring CDC73 mutations overexpress BC200 compared to wild-type carcinomas. Overall, these findings shed light on deregulation of lncRNAs in human parathyroid tumors and propose that circuits between lncRNAs and the oncosuppressors MEN1 or CDC73 may have a role in parathyroid tumorigenesis as epigenetic modulators. © 2020 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Adenoma , Neoplasia Endócrina Múltipla Tipo 1 , Neoplasias das Paratireoides , RNA Longo não Codificante , Humanos , Perda de Heterozigosidade , Neoplasia Endócrina Múltipla Tipo 1/genética , Neoplasias das Paratireoides/genética , Proteínas Proto-Oncogênicas , RNA Longo não Codificante/genética , Proteínas Supressoras de Tumor/genética
10.
Endocr Relat Cancer ; 25(7): 761-771, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29724878

RESUMO

Parathyroid tumors deregulate microRNAs belonging to the two clusters on the chromosome 19, the C19MC and miR-371-373 clusters. Here, we report that the embryonic miR-372 is aberrantly expressed in half of parathyroid adenomas (PAds) in most of atypical adenomas and carcinomas (n = 15). Through in situ hybridization, we identified that miR-372-positive parathyroid tumor cells were scattered throughout the tumor parenchyma. In PAd-derived cells, ectopic miR-372 inhibited the expression of its targets CDKN1A/p21 and LATS2 at both mRNA and protein levels. Although the viability of parathyroid cells was not affected by miR-372 overexpression, the miRNA blunted camptothecin-induced apoptosis in primary PAd-derived cultures. miR-372 overexpression in parathyroid tumor cells increased parathormone (PTH) mRNA levels, and it positively correlated in vivo with circulating PTH levels. Conversely, the parathyroid-specific genes TBX1 and GCM2 were not affected by miR-372 mimic transfection. Finally, miR-372 dampened the Wnt pathway in parathyroid tumor cells through DKK1 upregulation. In conclusion, miR-372 is a novel mechanism exploited by a subset of parathyroid tumor cells to partially decrease sensitivity to apoptosis, to increase PTH synthesis and to deregulate Wnt signaling.


Assuntos
MicroRNAs/biossíntese , Neoplasias das Paratireoides/genética , Apoptose/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias das Paratireoides/metabolismo , Neoplasias das Paratireoides/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Via de Sinalização Wnt
11.
Med Oncol ; 35(1): 2, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29209838

RESUMO

Brain metastases from NSCLC are associated with a poor prognosis, and local radiotherapy is the most effective therapeutic strategy. The oncofetal protein IMP3 has been studied extensively, and evidence suggests that its expression is related to shorter overall survival and a more aggressive phenotype in solid malignancies. Here, the prognostic role of IMP3 was investigated in a cohort of patients with NSCLC brain metastases in correlation with survival and tumor histotype. A series of 42 NSCLC brain metastases samples was analyzed by tissue microarray and immunohistochemical staining for IMP3. IMP3 expression was associated with shorter overall survival in the whole series and in subgroups of metastases from non-neuroendocrine pulmonary malignancies and adenocarcinoma metastases. These results indicated that IMP3 is a strong prognostic factor in non-neuroendocrine brain metastases and in particular in patients with adenocarcinoma metastases.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Proteínas de Ligação a RNA/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Adulto , Idoso , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Análise de Sobrevida
12.
Nat Commun ; 7: 13730, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27991488

RESUMO

The role of mitochondria in cancer is controversial. Using a genome-wide shRNA screen, we now show that tumours reprogram a network of mitochondrial dynamics operative in neurons, including syntaphilin (SNPH), kinesin KIF5B and GTPase Miro1/2 to localize mitochondria to the cortical cytoskeleton and power the membrane machinery of cell movements. When expressed in tumours, SNPH inhibits the speed and distance travelled by individual mitochondria, suppresses organelle dynamics, and blocks chemotaxis and metastasis, in vivo. Tumour progression in humans is associated with downregulation or loss of SNPH, which correlates with shortened patient survival, increased mitochondrial trafficking to the cortical cytoskeleton, greater membrane dynamics and heightened cell invasion. Therefore, a SNPH network regulates metastatic competence and may provide a therapeutic target in cancer.


Assuntos
Cinesinas/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo , Metástase Neoplásica/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Cinesinas/genética , Proteínas de Membrana , Redes e Vias Metabólicas/fisiologia , Proteínas Mitocondriais/genética , Proteínas rho de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa