RESUMO
This article is a summary of the activities of the ICTV's Bacterial and Archaeal Viruses Subcommittee for the years 2018 and 2019. Highlights include the creation of a new order, 10 families, 22 subfamilies, 424 genera and 964 species. Some of our concerns about the ICTV's ability to adjust to and incorporate new DNA- and protein-based taxonomic tools are discussed.
Assuntos
Vírus de Archaea/classificação , Bacteriófagos/classificação , Classificação/métodos , Archaea/virologia , Bactérias/virologiaRESUMO
A novel lytic Raoultella phage, RP180, was isolated and characterized. The RP180 genome has 44,851 base pairs and contains 65 putative genes, 35 of them encoding proteins whose functions were predicted based on sequence similarity to known proteins. The RP180 genome possesses a gene synteny typical of members of the subfamily Guernseyvirinae. Phylogenetic analysis of the RP180 genome and similar phage genomes revealed that phage RP180 is the first member of the genus Kagunavirus, subfamily Guernseyvirinae, that is specific for Raoultella sp. The genome of RP180 encodes a putative protein with similarity to CRISPR-like Cas4 nucleases, which belong to the pfam12705/PDDEXK_1 family. Cas4-like proteins of this family have been shown to interfere with the bacterial host type II-C CRISPR-Cas system.
Assuntos
Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Enterobacteriaceae/virologia , Filogenia , Siphoviridae/classificação , Siphoviridae/isolamento & purificação , Bacteriólise , Bacteriófagos/genética , Genoma Viral , Microscopia Eletrônica de Transmissão , Análise de Sequência de DNA , Siphoviridae/genética , Sintenia , Proteínas Virais/genética , Vírion/ultraestruturaRESUMO
The nal¨ve library from the lymphocytes of healthy humans was screened by murine single-stranded idiotypic antibodies against benzo[a]pyrene (pSh). The phage clone which contained of anti-idiotypic antibody against benzo[a]pyrene, designated as A4, was chosen for further work because of highly specific to pSh. The available protein databases were searched. The A4 amino acid sequence was unique and 76% identical to a sequence in antibody against interferon g. The A4 protein was expressed in bacteria and purified by two different methods: His-tagged A4 and CBD-fusion A4. Both the A4 bound to pSh and also to the human single chain idiotypic antibody against the benzo[a]pyrene (T72) by ELISA. The Kd values of A4 for pSh and T72 were very close: 4.44 × 10-7 M and 5.71 × 10-7M, respectively. A4 was a competitor with benzo[a]pyrene for binding sites of both idiotypic pSh and T72 in competitive ELISA. Thus, A4 was a high affinity anti-idiotypic against benzo[a]pyrene which recognised pSh and T72 active sites.
RESUMO
Polycyclic aromatic hydrocarbons (PAHs) are widely distributed and relocated in the environment as a result of the incomplete combustion of organic matter. Many PAHs and their epoxides are highly toxic, mutagenic and/or carcinogenic to microorganisms as well as to higher systems including humans. BP is one of the most toxicologically active PAHs and is often used as a prototype for this entire class of contaminants. In order to select anti-BP antibodies, the conjugate of BP with BSA (BP-BSA) was used to screen naïve combinatorial phage library of human scFvs. Seven unique scFvs against BP-BSA were selected after three rounds of selection. Analysis of the genes encoding the scFvs subdivided them to gene families and subfamilies. Homology with the closest germline ranged from 80.21% to 97.57% for heavy chains and 88.89% to 98.57% for the light chains. Four of the seven scFv amino acid residues sequences without stop codons in frame were selected for proteomic analysis with each other. Four scFvs encoded unique non-related proteins with low-sequence identity among them. All CDRs and the boundaries in the CDR3 formation were carried out. Two of the scFvs (T68 and T72) with the highest binding capabilities to PAHs were expressed in E. coli and purified using a nickel resin. The KDs of T68 to BP-BSA, chrysene, pyrene, and benzo[a]anthracene were almost similar, approximately 10(-7 )M. The KDs of T72 to benzo[a]anthracene and chrysene were 9.42 × 10(-8 )M and 2.63 × 10(-7 )M, respectively. The computational models of T68 and T72 active centers were different.
Assuntos
Benzo(a)pireno , Anticorpos de Cadeia Única/imunologia , Sequência de Aminoácidos , Sequência de Bases , DNA Bacteriano/genética , Escherichia coli/genética , Humanos , Dados de Sequência Molecular , Anticorpos de Cadeia Única/genéticaRESUMO
To facilitate the detection of the tick-borne encephalitis virus (TBEV), the causative agent of one of the most severe human neuroinfections, we have developed an immunoassay based on bioluminescent hybrid protein 14D5a-Rm7 as a detection probe. The protein containing Renilla luciferase as a reporter and a single-chain variable fragment (scFv) of murine immunoglobulin to TBEV as a recognition element was constructed, produced by bacterial expression, purified, and tested. Both domains were shown to reveal their specific biological properties-affinity to the target antigen and bioluminescent activity. Hybrid protein was applied as a label for solid-phase immunoassay of the antigens, associated with the tick-borne encephalitis virus (native glycoprotein E or extracts of the infected strain of lab ticks). The assay demonstrates high sensitivity (0.056 ng of glycoprotein E; 10(4)-10(5) virus particles or 0.1 pg virions) and simplicity and is competitive with conventional methods for detection of TBEV.
Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Encefalite Transmitida por Carrapatos/virologia , Imunoensaio/métodos , Luciferases de Renilla/química , Substâncias Luminescentes/química , Medições Luminescentes/métodos , Anticorpos de Cadeia Única/química , Animais , Humanos , Luciferases de Renilla/genética , Substâncias Luminescentes/metabolismo , Camundongos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Cadeia Única/genética , CarrapatosRESUMO
Phage therapy can be a useful approach in a number of clinical cases associated with multidrug-resistant (MDR) bacterial infections. In this study, we describe a successful consecutive phage and antibiotic application to cure a 3-month-old girl suffering from severe bronchitis after tracheostomy. Bronchitis was associated with two bacterial agents, MDR Pseudomonas aeruginosa and a rare opportunistic pathogen Dolosigranulum pigrum. The phage cocktail "Pyobacteriophage" containing at least two different phages against isolated MDR P. aeruginosa strain was used via inhalation and nasal drops. Topical application of the phage cocktail removed most of P. aeruginosa cells and contributed to a change in the antimicrobial resistance profile of surviving P. aeruginosa cells. As a result, it became possible to choose and administer an appropriate antibiotic that was effective against both infectious agents. Complete recovery of the infant was recorded.
Assuntos
Bacteriófagos , Bronquite , Infecções por Pseudomonas , Fagos de Pseudomonas , Feminino , Humanos , Lactente , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pseudomonas aeruginosa , Sistema Respiratório , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologiaRESUMO
Diabetic foot ulcers occur as a common complication of diabetes. The concomitant infection significantly delays the healing of the ulcers. Antibiotic treatment of infected ulcers is complicated by the formation of microbial biofilms, which are often heterogeneous and resistant to antibiotics. Bacteriophage therapy is considered an additional approach to the treatment of infected wounds. Here, we describe the basic method of application of bacteriophages for the treatment of infected diabetic foot ulcers, including very large ones.
Assuntos
Bacteriófagos , Diabetes Mellitus , Pé Diabético , Infecção dos Ferimentos , Humanos , Pé Diabético/terapia , Pé Diabético/complicações , Antibacterianos/uso terapêutico , Infecção dos Ferimentos/terapia , Cicatrização , Diabetes Mellitus/tratamento farmacológicoRESUMO
Production of infectious bacteriophage based on its genome is one of the necessary steps in the pipeline of editing phage genomes and creating synthetic bacteriophages. This process is called "rebooting" of the phage genome. In this chapter, we describe key steps required for successful genome "rebooting" using a native host or intermediate host. A detailed protocol is given for the "rebooting" of the genome of T7 bacteriophage specific to Escherichia coli and bacteriophage KP32_192 that infects Klebsiella pneumoniae.
Assuntos
Bacteriófagos , Bacteriófagos/genética , Saccharomyces cerevisiae/genética , Plasmídeos/genética , Escherichia coli/genética , Recombinação Genética , Clonagem MolecularRESUMO
CrAss-like phages play an important role in maintaining ecological balance in the human intestinal microbiome. However, their genetic diversity and lifestyle are still insufficiently studied. In this study, a novel CrAssE-Sib phage genome belonging to the epsilon crAss-like phage genomes was found. Comparative analysis indicated that epsilon crAss-like phages are divided into two putative genera, which were proposed to be named Epsilonunovirus and Epsilonduovirus; CrAssE-Sib belongs to the former. The crAssE-Sib genome contains a diversity-generating retroelement (DGR) cassette with all essential elements, including the reverse transcriptase (RT) and receptor binding protein (RBP) genes. However, this RT contains the GxxxSP motif in its fourth domain instead of the usual GxxxSQ motif found in all known phage and bacterial DGRs. RBP encoded by CrAssE-Sib and other Epsilonunoviruses has an unusual structure, and no similar phage proteins were found. In addition, crAssE-Sib and other Epsilonunoviruses encode conserved prophage repressor and anti-repressors that could be involved in lysogenic-to-lytic cycle switches. Notably, DNA primase sequences of epsilon crAss-like phages are not included in the monophyletic group formed by the DNA primases of all other crAss-like phages. Therefore, epsilon crAss-like phage substantially differ from other crAss-like phages, indicating the need to classify these phages into a separate family.
Assuntos
Bacteriófagos , Genoma Viral , Filogenia , Bacteriófagos/genética , Bacteriófagos/classificação , Proteínas Virais/genética , Proteínas Virais/metabolismo , Retroelementos , Variação Genética , Prófagos/genética , DNA Viral/genética , DNA Primase/genética , DNA Primase/metabolismo , Genômica/métodos , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismoRESUMO
Multidrug-resistant Gram-positive bacteria, including bacteria from the genus Staphylococcus, are currently a challenge for medicine. Therefore, the development of new antimicrobials is required. Promising candidates for new antistaphylococcal drugs are phage endolysins, including endolysins from thermophilic phages against other Gram-positive bacteria. In this study, the recombinant endolysin LysAP45 from the thermophilic Aeribacillus phage AP45 was obtained and characterized. The recombinant endolysin LysAP45 was produced in Escherichia coli M15 cells. It was shown that LysAP45 is able to hydrolyze staphylococcal peptidoglycans from five species and eleven strains. Thermostability tests showed that LysAP45 retained its hydrolytic activity after incubation at 80 °C for at least 30 min. The enzymatically active domain of the recombinant endolysin LysAP45 completely disrupted biofilms formed by multidrug-resistant S. aureus, S. haemolyticus, and S. epidermidis. The results suggested that LysAP45 is a novel thermostable antimicrobial agent capable of destroying biofilms formed by various species of multidrug-resistant Staphylococcus. An unusual putative cell-binding domain was found at the C-terminus of LysAP45. No domains with similar sequences were found among the described endolysins.
Assuntos
Bacillaceae , Bacteriófagos , Endopeptidases , Staphylococcus aureus Resistente à Meticilina , Staphylococcus , Staphylococcus epidermidis , Bacteriófagos/genética , Biofilmes , Escherichia coli/genéticaRESUMO
Bacteria of the genus Staphylococcus are significant challenge for medicine, as many species are resistant to multiple antibiotics and some are even to all of the antibiotics we use. One of the approaches to developing new therapeutics to treat staphylococcal infections is the use of bacteriophages specific to these bacteria or the lytic enzymes of such bacteriophages, which are capable of hydrolyzing the cell walls of these bacteria. In this study, a new bacteriophage vB_SepP_134 (St 134) specific to Staphylococcus epidermidis was described. This podophage, with a genome of 18,275 bp, belongs to the Andhravirus genus. St 134 was able to infect various strains of 12 of the 21 tested coagulase-negative Staphylococcus species and one clinical strain from the Staphylococcus aureus complex. The genes encoding endolysin (LysSte134_1) and tail tip lysin (LysSte134_2) were identified in the St 134 genome. Both enzymes were cloned and produced in Escherichia coli cells. The endolysin LysSte134_1 demonstrated catalytic activity against peptidoglycans isolated from S. aureus, S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus warneri. LysSte134_1 was active against S. aureus and S. epidermidis planktonic cells and destroyed the biofilms formed by clinical strains of S. aureus and S. epidermidis.
Assuntos
Bacteriófagos , Endopeptidases , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Bacteriófagos/genética , Staphylococcus , Staphylococcus epidermidis , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , BiofilmesRESUMO
Stenotrophomonas maltophilia was discovered as a soil bacterium associated with the rhizosphere. Later, S. maltophilia was found to be a multidrug-resistant hospital-associated pathogen. Lytic bacteriophages are prospective antimicrobials; therefore, there is a need for the isolation and characterization of new Stenotrophomonas phages. The phage StenM_174 was isolated from litter at a poultry farm using a clinical strain of S. maltophilia as the host. StenM_174 reproduced in a wide range of clinical and environmental strains of Stenotrophomonas, mainly S. maltophilia, and it had a podovirus morphotype. The length of the genomic sequence of StenM_174 was 42,956 bp, and it contained 52 putative genes. All genes were unidirectional, and 31 of them encoded proteins with predicted functions, while the remaining 21 were identified as hypothetical ones. Two tail spike proteins of StenM_174 were predicted using AlphaFold2 structural modeling. A comparative analysis of the genome shows that the Stenotrophomonas phage StenM_174, along with the phages Ponderosa, Pepon, Ptah, and TS-10, can be members of the new putative genus Ponderosavirus in the Autographiviridae family. In addition, the analyzed data suggest a new subfamily within this family.
Assuntos
Bacteriófagos , Caudovirales , Stenotrophomonas maltophilia , Stenotrophomonas/genética , Estudos Prospectivos , Caudovirales/genética , Stenotrophomonas maltophilia/genética , Genoma ViralRESUMO
Stenotrophomonas rhizophila was first discovered in soil; it is associated with the rhizosphere and capable of both protecting roots and stimulating plant growth. Therefore, it has a great potential to be used in biocontrol. The study of S. rhizophila phages is important for a further evaluation of their effect on the fitness and properties of host bacteria. A novel phage StenR_269 and its bacterial host S. rhizophila were isolated from a soil sample in the remediation area of a coal mine. Electron microscopy revealed a large capsid (~Ø80 nm) connected with a short tail, which corresponds to the podovirus morphotype. The length of the genomic sequence of the StenR_269 was 66,322 bp and it contained 103 putative genes; 40 of them encoded proteins with predicted functions, 3 corresponded to tRNAs, and the remaining 60 were identified as hypothetical ones. Comparative analysis indicated that the StenR_269 phage had a similar genome organization to that of the unclassified Xanthomonas phage DES1, despite their low protein similarity. In addition, the signature proteins of StenR_269 and DES1 had low similarity and these proteins clustered far from the corresponding proteins of classified phages. Thus, the StenR_269 genome is orphan and the analyzed data suggest a new family in the class Caudoviricetes.
Assuntos
Bacteriófagos , Genoma Viral , Bacteriófagos/genética , Genômica , Proteínas do Capsídeo/genética , SoloRESUMO
Gut bacteria influence the development of different pathologies caused by bacteria, fungi and parasitoids in insects. Wax moth larvae became more susceptible to fungal infections after envenomation by the ectoparasitoid Habrobracon hebetor. In addition, spontaneous bacterioses occurred more often in envenomated larvae. We analyzed alterations in the midgut microbiota and immunity of the wax moth in response to H. hebetor envenomation and topical fungal infection (Beauveria bassiana) alone or in combination using 16S rRNA sequencing, an analysis of cultivable bacteria and a qPCR analysis of immunity- and stress-related genes. Envenomation led to a predominance shift from enterococci to enterobacteria, an increase in CFUs and the upregulation of AMPs in wax moth midguts. Furthermore, mycosis nonsignificantly increased the abundance of enterobacteria and the expression of AMPs in the midgut. Combined treatment led to a significant increase in the abundance of Serratia and a greater upregulation of gloverin. The oral administration of predominant bacteria (Enterococcus faecalis, Enterobacter sp. and Serratia marcescens) to wax moth larvae synergistically increased fungal susceptibility. Thus, the activation of midgut immunity might prevent the bacterial decomposition of envenomated larvae, thus permitting the development of fungal infections. Moreover, changes in the midgut bacterial community may promote fungal killing.
Assuntos
Microbioma Gastrointestinal/imunologia , Lepidópteros/imunologia , Lepidópteros/microbiologia , Microbiota/imunologia , Micoses/imunologia , Micoses/microbiologia , Animais , Bactérias/genética , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Fungos/genética , Larva/microbiologia , Microbiota/genética , Mariposas/microbiologia , RNA Ribossômico 16S/genéticaRESUMO
In the recent years, multidrug-resistant bacteria have become a global threat, and phage therapy may to be used as an alternative to antibiotics or, at least, as a supplementary approach to treatment of some bacterial infections. Here, we describe the results of bacteriophage application in clinical practice for the treatment of localized infections in wounds, burns, and trophic ulcers, including diabetic foot ulcers. This mini-review includes data from various studies available in English, as well as serial case reports published in Russian scientific literature (with, at least, abstracts accessible in English). Since, it would be impossible to describe all historical Russian publications; we focused on publications included clear data on dosage and rout of phage administration.
RESUMO
Diabetic foot ulcers occur as a common complication of diabetes. Healing of the ulcers is largely delayed by the concomitant infection. Antibiotic treatment of infected ulcers is complicated by formation of microbial biofilms , which are often heterogeneous and resistant to antibiotics. Bacteriophage therapy is considered as an additional approach to the treatment of infected wounds. Here, we describe the basic method of application of bacteriophages for treatment of infected diabetic foot ulcers, including ones that are very large.
Assuntos
Bacteriófagos/fisiologia , Pé Diabético/prevenção & controle , Infecção dos Ferimentos/prevenção & controle , Fenômenos Fisiológicos Bacterianos , Humanos , Pessoa de Meia-Idade , Cicatrização , Infecção dos Ferimentos/microbiologiaRESUMO
BACKGROUND: Anti-cytokine autoantibodies (auto-Abs) are ubiquitous both in patients suffering from infectious, inflammatory and autoimmune diseases and in healthy individuals. Particularly anti-IFN-γ auto-Abs are shown to be elevated in blood of multiple sclerosis (MS) patients. OBJECTIVE: The aim of present study was to investigate whether repertoires of anti-IFN-γ auto-Abs differ in MS patients and healthy donors. METHODS: Using phage display technique we have compared repertoires of the genes encoding anti-IFN-γ single-chain variable fragments selected from MS and naïve phage display libraries. RESULTS: The panel of anti-IFN-γ auto-Abs selected from MS library includes (i) 'fetal' auto-Abs, encoded by the VH6-1 gene segment and the combination proximal D segments with distal JH segments; (ii) naïve auto-Abs; (iii) affinity maturated antibodies; and (iv) abnormal single-domain antibodies. Meanwhile, the panel of anti-IFN-γ auto-Abs selected from naïve library mainly contains the naïve antibodies. Moreover, the overall antibody repertoire of MS library is skewed compared to the overall repertoire of naïve library and also contained the antibodies carrying a 'fetal' VH6 domain and the ratio of κ and λ chains was reversed. CONCLUSIONS: These results suggest existence of a special mechanism or trigger that provides for reconstitution of the immune system in MS.