Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(17): 8140-8145, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37610296

RESUMO

Transistors realized on the 2D antiferromagnetic semiconductor CrPS4 exhibit large magnetoconductance due to magnetic-field-induced changes in the magnetic state. The microscopic mechanism coupling the conductance and magnetic state is not understood. We identify it by analyzing the evolution of the parameters determining the transistor behavior─carrier mobility and threshold voltage─with temperature and magnetic field. For temperatures T near the Néel temperature TN, the magnetoconductance originates from a mobility increase due to the applied magnetic field that reduces spin fluctuation induced disorder. For T ≪ TN, instead, what changes is the threshold voltage, so that increasing the field at fixed gate voltage increases the density of accumulated electrons. The phenomenon is explained by a conduction band-edge shift correctly predicted by the ab initio calculations. Our results demonstrate that the band structure of CrPS4 depends on its magnetic state and reveal a mechanism for magnetoconductance that had not been identified earlier.

2.
Nano Lett ; 23(14): 6433-6439, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37460109

RESUMO

Black phosphorus (BP) stands out among two-dimensional (2D) semiconductors because of its high mobility and thickness dependent direct band gap. However, the quasiparticle band structure of ultrathin BP has remained inaccessible to experiment thus far. Here we use a recently developed laser-based microfocus angle resolved photoemission (µ-ARPES) system to establish the electronic structure of 2-9 layer BP from experiment. Our measurements unveil ladders of anisotropic, quantized subbands at energies that deviate from the scaling observed in conventional semiconductor quantum wells. We quantify the anisotropy of the effective masses and determine universal tight-binding parameters, which provide an accurate description of the electronic structure for all thicknesses.

3.
Nano Lett ; 22(15): 6149-6155, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867517

RESUMO

We perform magnetotransport experiments on VI3 multilayers to investigate the relation between ferromagnetism in bulk and in exfoliated layers. The magnetoconductance measured on field-effect transistors and tunnel barriers shows that the Curie temperature of exfoliated multilayers is TC = 57 K, larger than in bulk (TC,bulk = 50 K). Below T ≈ 40 K, we observe an unusual evolution of the tunneling magnetoconductance, analogous to the phenomenology observed in bulk. Comparing the magnetoconductance measured for fields applied in- or out-of-plane corroborates the analogy, allows us to determine that the orientation of the easy-axis in multilayers is similar to that in bulk, and suggests that the in-plane component of the magnetization points in different directions in different layers. Besides establishing that the magnetic state of bulk and multilayers are similar, our experiments illustrate the complementarity of magnetotransport and magneto-optical measurements to probe magnetism in 2D materials.

4.
Nano Lett ; 22(16): 6760-6766, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35930625

RESUMO

We report experimental investigations of transport through bilayer graphene (BLG)/chromium trihalide (CrX3; X = Cl, Br, I) van der Waals interfaces. In all cases, a large charge transfer from BLG to CrX3 takes place (reaching densities in excess of 1013 cm-2), and generates an electric field perpendicular to the interface that opens a band gap in BLG. We determine the gap from the activation energy of the conductivity and find excellent agreement with the latest theory accounting for the contribution of the σ bands to the BLG dielectric susceptibility. We further show that for BLG/CrCl3 and BLG/CrBr3 the band gap can be extracted from the gate voltage dependence of the low-temperature conductivity, and use this finding to refine the gap dependence on the magnetic field. Our results allow a quantitative comparison of the electronic properties of BLG with theoretical predictions and indicate that electrons occupying the CrX3 conduction band are correlated.

5.
Nat Mater ; 19(3): 299-304, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32015532

RESUMO

Van der Waals (vdW) interfaces based on 2D materials are promising for optoelectronics, as interlayer transitions between different compounds allow tailoring of the spectral response over a broad range. However, issues such as lattice mismatch or a small misalignment of the constituent layers can drastically suppress electron-photon coupling for these interlayer transitions. Here, we engineered type-II interfaces by assembling atomically thin crystals that have the bottom of the conduction band and the top of the valence band at the Γ point, and thus avoid any momentum mismatch. We found that these van der Waals interfaces exhibit radiative optical transitions irrespective of the lattice constant, the rotational and/or translational alignment of the two layers or whether the constituent materials are direct or indirect gap semiconductors. Being robust and of general validity, our results broaden the scope of future optoelectronics device applications based on two-dimensional materials.

6.
Nano Lett ; 20(2): 1322-1328, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31874038

RESUMO

The assembly of suitably designed van der Waals (vdW) heterostructures represents a new approach to produce artificial systems with engineered electronic properties. Here, we apply this strategy to realize synthetic semimetals based on vdW interfaces formed by two different semiconductors. Guided by existing ab initio calculations, we select WSe2 and SnSe2 mono- and multilayers to assemble vdW interfaces and demonstrate the occurrence of semimetallicity by means of different transport experiments. Semimetallicity manifests itself in a finite minimum conductance upon sweeping the gate over a large range in ionic liquid gated devices, which also offer spectroscopic capabilities enabling the quantitative determination of the band overlap. The semimetallic state is additionally revealed in Hall effect measurements by the coexistence of electrons and holes, observed by either looking at the evolution of the Hall slope with sweeping the gate voltage or with lowering temperature. Finally, semimetallicity results in the low-temperature metallic conductivity of interfaces of two materials that are themselves insulating. These results demonstrate the possibility to implement a state of matter that had not yet been realized in vdW interfaces and represent a first step toward using these interfaces to engineer topological or excitonic insulating states.

7.
Nano Lett ; 20(4): 2452-2459, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32142288

RESUMO

The magnetic state of atomically thin semiconducting layered antiferromagnets such as CrI3 and CrCl3 can be probed by forming tunnel barriers and measuring their resistance as a function of magnetic field (H) and temperature (T). This is possible because the spins within each individual layer are ferromagnetically aligned and the tunneling magnetoresistance depends on the relative orientation of the magnetization in adjacent layers. The situation is different for systems that are antiferromagnetic within the layers in which case it is unclear whether magnetoresistance measurements can provide information about the magnetic state. Here, we address this issue by investigating tunnel transport through atomically thin crystals of MnPS3, a van der Waals semiconductor that in the bulk exhibits easy-axis antiferromagnetic order within the layers. For thick multilayers below T ∼ 78 K, a T-dependent magnetoresistance sets in at µ0H ∼ 5 T and is found to track the boundary between the antiferromagnetic and the spin-flop phases known from bulk measurements. We show that the magnetoresistance persists as thickness is reduced with nearly unchanged characteristic temperature and magnetic field scales, albeit with a different dependence on H, indicating the persistence of magnetism in the ultimate limit of individual monolayers.

8.
Nano Lett ; 19(12): 8836-8845, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31670964

RESUMO

Ionic liquid gated field-effect transistors (FETs) based on semiconducting transition metal dichalcogenides (TMDs) are used to study a rich variety of extremely interesting physical phenomena, but important aspects of how charge carriers are accumulated in these systems are not understood. We address these issues by means of a systematic experimental study of transport in monolayer MoSe2 and WSe2 as a function of magnetic field and gate voltage, exploring accumulated densities of carriers ranging from approximately 1014 cm-2 holes in the valence band to 4 × 1014 cm-2 electrons in the conduction band. We identify the conditions when the chemical potential enters different valleys in the monolayer band structure (the K and Q valley in the conduction band and the two spin-split K-valleys in the valence band) and find that an independent electron picture describes the occupation of states well. Unexpectedly, however, the experiments show very large changes in the device capacitance when multiple valleys are occupied that are not at all compatible with the commonly expected quantum capacitance contribution of these systems, CQ = e2/ (dµ/dn). A theoretical analysis of all terms responsible for the total capacitance shows that under general conditions a term is present besides the usual quantum capacitance, which becomes important for very small distances between the capacitor plates. This term, which we call cross quantum capacitance, originates from screening of the electric field generated by charges on one plate from charges sitting on the other plate. The effect is negligible in normal capacitors but large in ionic liquid FETs because of the atomic proximity between the ions in the gate and the accumulated charges on the TMD, and it accounts for all our experimental observations. Our findings therefore reveal an important contribution to the capacitance of physical systems that had been virtually entirely neglected until now.

9.
Nano Lett ; 19(1): 554-560, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30570259

RESUMO

Two-dimensional crystals of semi-metallic van der Waals materials hold much potential for the realization of novel phases, as exemplified by the recent discoveries of a polar metal in few-layer 1T'-WTe2 and of a quantum spin Hall state in monolayers of the same material. Understanding these phases is particularly challenging because little is known from experiments about the momentum space electronic structure of ultrathin crystals. Here, we report direct electronic structure measurements of exfoliated mono-, bi-, and few-layer 1T'-WTe2 by laser-based microfocus angle-resolved photoemission. This is achieved by encapsulating with monolayer graphene a flake of WTe2 comprising regions of different thickness. Our data support the recent identification of a quantum spin Hall state in monolayer 1T'-WTe2 and reveal strong signatures of the broken inversion symmetry in the bilayer. We finally discuss the sensitivity of encapsulated samples to contaminants following exposure to ambient atmosphere.

10.
Nano Lett ; 18(8): 5146-5152, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30001136

RESUMO

Recent technical progress demonstrates the possibility of stacking together virtually any combination of atomically thin crystals of van der Waals bonded compounds to form new types of heterostructures and interfaces. As a result, there is the need to understand at a quantitative level how the interfacial properties are determined by the properties of the constituent 2D materials. We address this problem by studying the transport and optoelectronic response of two different interfaces based on transition-metal dichalcogenide monolayers, namely WSe2-MoSe2 and WSe2-MoS2. By exploiting the spectroscopic capabilities of ionic liquid gated transistors, we show how the conduction and valence bands of the individual monolayers determine the bands of the interface, and we establish quantitatively (directly from the measurements) the energetic alignment of the bands in the different materials as well as the magnitude of the interfacial band gap. Photoluminescence and photocurrent measurements allow us to conclude that the band gap of the WSe2-MoSe2 interface is direct in k space, whereas the gap of WSe2/MoS2 is indirect. For WSe2/MoSe2, we detect the light emitted from the decay of interlayer excitons and determine experimentally their binding energy using the values of the interfacial band gap extracted from transport measurements. The technique that we employed to reach this conclusion demonstrates a rather-general strategy for characterizing quantitatively the interfacial properties in terms of the properties of the constituent atomic layers. The results presented here further illustrate how van der Waals interfaces of two distinct 2D semiconducting materials are composite systems that truly behave as artificial semiconductors, the properties of which can be deterministically defined by the selection of the appropriate constituent semiconducting monolayers.

11.
Nano Lett ; 18(7): 4303-4308, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29870263

RESUMO

Thin van der Waals (vdW) layered magnetic materials hold the possibility of realizing vdW heterostructures with new functionalities. Here, we report on the realization and investigation of tunneling spin valves based on van der Waals heterostructures consisting of an atomically thin hBN layer acting as tunnel barrier and two exfoliated Fe3GeTe2 crystals acting as ferromagnetic electrodes. Low-temperature anomalous Hall effect measurements show that thin Fe3GeTe2 crystals are metallic ferromagnets with an easy axis perpendicular to the layers and a very sharp magnetization switching at magnetic field values that depends slightly on their geometry. In Fe3GeTe2/hBN/Fe3GeTe2 heterostructures, we observe textbook behavior of the tunneling resistance, which is minimum (maximum) when the magnetization in the two electrodes is parallel (antiparallel) to each other. The magnetoresistance is 160% at low temperature, from which we determine the spin polarization of Fe3GeTe2 to be 0.66, corresponding to 83% and 17% of the majority and minority carriers, respectively. The measurements also show that, with increasing temperature, the evolution of the spin polarization extracted from the tunneling magnetoresistance is proportional to the temperature dependence of the magnetization extracted from the analysis of the anomalous Hall conductivity. This suggests that the magnetic properties of the surface are representative of those of the bulk, as may be expected for vdW materials.

12.
Nano Lett ; 18(11): 6696-6702, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30354173

RESUMO

Many atomically thin exfoliated two-dimensional (2D) materials degrade when exposed to ambient conditions. They can be protected and investigated by means of transport and optical measurements if they are encapsulated between chemically inert single layers in the controlled atmosphere of a glovebox. Here, we demonstrate that the same encapsulation procedure is also compatible with scanning tunneling microscopy (STM) and spectroscopy (STS). To this end, we report a systematic STM/STS investigation of a model system consisting of an exfoliated 2H-NbSe2 crystal capped with a protective 2H-MoS2 monolayer. We observe different electronic coupling between MoS2 and NbSe2 from a strong coupling when their lattices are aligned within a few degrees to essentially no coupling for 30° misaligned layers. We show that STM always probes intrinsic NbSe2 properties such as the superconducting gap and charge density wave at low temperature when setting the tunneling bias inside the MoS2 band gap, irrespective of the relative angle between the NbSe2 and MoS2 lattices. This study demonstrates that encapsulation is fully compatible with STM/STS investigations of 2D materials.

13.
Nano Lett ; 17(11): 7003-7008, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29058917

RESUMO

Spin-orbit interaction (SOI) that is gate-tunable over a broad range is essential to exploiting novel spin phenomena. Achieving this regime has remained elusive because of the weakness of the underlying relativistic coupling and lack of its tunability in solids. Here we outline a general strategy that enables exceptionally high tunability of SOI through creating a which-layer spin-orbit field inhomogeneity in graphene multilayers. An external transverse electric field is applied to shift carriers between the layers with strong and weak SOI. Because graphene layers are separated by subnanometer scales, exceptionally high tunability of SOI can be achieved through a minute carrier displacement. A detailed analysis of the experimentally relevant case of bilayer graphene on a semiconducting transition metal dichalchogenide substrate is presented. In this system, a complete tunability of SOI amounting to its ON/OFF switching can be achieved. New opportunities for spin control are exemplified with electrically driven spin resonance and topological phases with different quantized intrinsic valley Hall conductivities.

14.
Nano Lett ; 17(9): 5719-5725, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28829605

RESUMO

The band structure of many semiconducting monolayer transition metal dichalcogenides (TMDs) possesses two degenerate valleys with equal and opposite Berry curvature. It has been predicted that, when illuminated with circularly polarized light, interband transitions generate an unbalanced nonequilibrium population of electrons and holes in these valleys, resulting in a finite Hall voltage at zero magnetic field when a current flows through the system. This is the so-called valley Hall effect that has recently been observed experimentally. Here, we show that this effect is mediated by photogenerated neutral excitons and charged trions and not by interband transitions generating independent electrons and holes. We further demonstrate an experimental strategy, based on wavelength dependent spatial mapping of the Hall voltage, which allows the exciton and trion contributions to the valley Hall effect to be discriminated in the measurement. These results represent a significant step forward in our understanding of the microscopic origin of photoinduced valley Hall effect in semiconducting transition metal dichalcogenides and demonstrate experimentally that composite quasi-particles, such as trions, can also possess a finite Berry curvature.

15.
Phys Rev Lett ; 117(17): 176601, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27824454

RESUMO

We report the direct observation of a long-range field effect in WTe_{2} devices, leading to large gate-induced changes of transport through crystals much thicker than the electrostatic screening length. The phenomenon-which manifests itself very differently from the conventional field effect-originates from the nonlocal nature of transport in the devices that are thinner than the carrier mean free path. We reproduce theoretically the gate dependence of the measured classical and quantum magnetotransport, and show that the phenomenon is caused by the gate tuning of the bulk carrier mobility by changing the scattering at the surface. Our results demonstrate experimentally the possibility to gate tune the electronic properties deep in the interior of conducting materials, avoiding limitations imposed by electrostatic screening.

16.
Nano Lett ; 15(2): 1197-202, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25607653

RESUMO

We investigate transport through ionic liquid gated field effect transistors (FETs) based on exfoliated crystals of semiconducting WS2. Upon electron accumulation, at surface densities close to, or just larger than, 10(14) cm(-2), transport exhibits metallic behavior with the surface resistivity decreasing pronouncedly upon cooling. A detailed characterization as a function of temperature and magnetic field clearly shows the occurrence of a gate-induced superconducting transition below a critical temperature Tc ≈ 4 K, a finding that represents the first demonstration of superconductivity in tungsten-based semiconducting transition metal dichalcogenides. We investigate the nature of superconductivity and find significant inhomogeneity, originating from the local detaching of the frozen ionic liquid from the WS2 surface. Despite the inhomogeneity, we find that in all cases where a fully developed zero resistance state is observed, different properties of the devices exhibit a behavior characteristic of a Berezinskii-Kosterlitz-Thouless transition, as it could be expected in view of the two-dimensional nature of the electrostatically accumulated electron system.

17.
Nano Lett ; 15(12): 8289-94, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26594892

RESUMO

We realize and investigate ionic liquid gated field-effect transistors (FETs) on large-area MoS2 monolayers grown by chemical vapor deposition (CVD). Under electron accumulation, the performance of these devices is comparable to that of FETs based on exfoliated flakes. FETs on CVD-grown material, however, exhibit clear ambipolar transport, which for MoS2 monolayers had not been reported previously. We exploit this property to estimate the bandgap Δ of monolayer MoS2 directly from the device transfer curves and find Δ ≈ 2.4-2.7 eV. In the ambipolar injection regime, we observe electroluminescence due to exciton recombination in MoS2, originating from the region close to the hole-injecting contact. Both the observed transport properties and the behavior of the electroluminescence can be consistently understood as due to the presence of defect states at an energy of 250-300 meV above the top of the valence band, acting as deep traps for holes. Our results are of technological relevance, as they show that devices with useful optoelectronic functionality can be realized on large-area MoS2 monolayers produced by controllable and scalable techniques.

18.
Nano Lett ; 15(4): 2336-42, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25803208

RESUMO

We study the evolution of the band gap structure in few-layer MoTe2 crystals, by means of low-temperature microreflectance (MR) and temperature-dependent photoluminescence (PL) measurements. The analysis of the measurements indicate that in complete analogy with other semiconducting transition metal dichalchogenides (TMDs) the dominant PL emission peaks originate from direct transitions associated with recombination of excitons and trions. When we follow the evolution of the PL intensity as a function of layer thickness, however, we observe that MoTe2 behaves differently from other semiconducting TMDs investigated earlier. Specifically, the exciton PL yield (integrated PL intensity) is identical for mono and bilayer, decreases slightly for trilayer, and it is significantly lower in the tetralayer. The analysis of this behavior and of all our experimental observations is fully consistent with mono and bilayer MoTe2 being direct band gap semiconductors with tetralayer MoTe2 being an indirect gap semiconductor and with trilayers having nearly identical direct and indirect gaps. This conclusion is different from the one reached for other recently investigated semiconducting transition metal dichalcogenides for which monolayers are found to be direct band gap semiconductors, and thicker layers have indirect band gaps that are significantly smaller (by hundreds of meV) than the direct gap. We discuss the relevance of our findings for experiments of fundamental interest and possible future device applications.

19.
Nano Lett ; 14(4): 2019-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24669957

RESUMO

We have realized ambipolar ionic liquid gated field-effect transistors based on WS2 mono- and bilayers, and investigated their opto-electronic response. A thorough characterization of the transport properties demonstrates the high quality of these devices for both electron and hole accumulation, which enables the quantitative determination of the band gap (Δ1L = 2.14 eV for monolayers and Δ2L = 1.82 eV for bilayers). It also enables the operation of the transistors in the ambipolar injection regime with electrons and holes injected simultaneously at the two opposite contacts of the devices in which we observe light emission from the FET channel. A quantitative analysis of the spectral properties of the emitted light, together with a comparison with the band gap values obtained from transport, show the internal consistency of our results and allow a quantitative estimate of the excitonic binding energies to be made. Our results demonstrate the power of ionic liquid gating in combination with nanoelectronic systems, as well as the compatibility of this technique with optical measurements on semiconducting transition metal dichalcogenides. These findings further open the way to the investigation of the optical properties of these systems in a carrier density range much broader than that explored until now.

20.
Nano Lett ; 14(4): 2135-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24611523

RESUMO

We investigate low-temperature magneto-transport in recently developed, high-quality multiterminal suspended bilayer graphene devices, enabling the independent measurement of the longitudinal and transverse resistance. We observe clear signatures of the fractional quantum Hall effect with different states that are either fully developed, and exhibit a clear plateau in the transverse resistance with a concomitant dip in longitudinal resistance or incipient, and exhibit only a longitudinal resistance minimum. All observed states scale as a function of filling factor ν, as expected. An unprecedented even-denominator fractional state is observed at ν = -1/2 on the hole side, exhibiting a clear plateau in Rxy quantized at the expected value of 2h/e(2) with a precision of ∼0.5%. Many of our observations, together with a recent electronic compressibility measurement performed in graphene bilayers on hexagonal boron-nitride (hBN) substrates, are consistent with a recent theory that accounts for the effect of the degeneracy between the N = 0 and N = 1 Landau levels in the fractional quantum Hall effect and predicts the occurrence of a Moore-Read type ν = -1/2 state. Owing to the experimental flexibility of bilayer graphene, which has a gate-dependent band structure, can be easily accessed by scanning probes, and can be contacted with materials such as superconductors, our findings offer new possibilities to explore the microscopic nature of even-denominator fractional quantum Hall effect.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa