Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163358

RESUMO

Epilepsy is a heterogenous neurological disorder characterized by recurrent unprovoked seizures, mitochondrial stress, and neurodegeneration. Hydrogen sulfide (H2S) is a gasotransmitter that promotes mitochondrial function and biogenesis, elicits neuromodulation and neuroprotection, and may acutely suppress seizures. A major gap in knowledge remains in understanding the role of mitochondrial dysfunction and progressive changes in H2S levels following acute seizures or during epileptogenesis. We thus sought to quantify changes in H2S and its methylated metabolite (MeSH) via LC-MS/MS following acute maximal electroshock and 6 Hz 44 mA seizures in mice, as well as in the early phases of the corneally kindled mouse model of chronic seizures. Plasma H2S was acutely reduced after a maximal electroshock seizure. H2S or MeSH levels and expressions of related genes in whole brain homogenates from corneally kindled mice were not altered. However, plasma H2S levels were significantly lower during kindling, but not after established kindling. Moreover, we demonstrated a time-dependent increase in expression of mitochondrial membrane integrity-related proteins, OPA1, MFN2, Drp1, and Mff during kindling, which did not correlate with changes in gene expression. Taken together, short-term reductions in plasma H2S could be a novel biomarker for seizures. Future studies should further define the role of H2S and mitochondrial stress in epilepsy.


Assuntos
Eletrochoque/efeitos adversos , Epilepsia/metabolismo , Sulfeto de Hidrogênio/sangue , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Epilepsia/etiologia , Regulação da Expressão Gênica , Excitação Neurológica , Masculino , Metilação , Camundongos , Espectrometria de Massas em Tandem , Fatores de Tempo
2.
Sex Transm Dis ; 48(8): 529-535, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34110759

RESUMO

BACKGROUND: Chlamydia trachomatis (CT) infection remains highly prevalent, and young women are disproportionately affected. Most CT-infected women are asymptomatic, and their infection often goes unrecognized and untreated. We hypothesized that testing for active CT infection with molecular diagnostics and obtaining a reported history of CT infection underestimate the prevalence of current and past CT infection, and incorporating serum CT antibody testing in addition to these other prevalence measures would generate more accurate estimates of the prevalence of CT infection in asymptomatic young women. METHODS: We enrolled 362 asymptomatic women aged 16 to 29 years at 4 different clinical settings in Birmingham, AL, between August 2016 and January 2020 and determined the prevalence of CT infection based on having 1 or more of the following prevalence measures: an active urogenital CT infection based on molecular testing, reported prior CT infection, and/or being CT seropositive. Multivariable regression analysis was used to determine predictors of the prevalence of CT infection after adjustment for participant characteristics. RESULTS: The prevalence of CT infection was 67.7% (95% confidence interval, 62.6%-72.5%). Addition of CT antibody testing to the other individual prevalence measures more than doubled the CT infection prevalence. Non-Hispanic Black race, reported prior gonorrhea, and reported prior trichomoniasis predicted a higher prevalence of CT infection. CONCLUSIONS: More than half of women were unaware of ever having CT infection, suggesting many were at risk for CT-associated reproductive complications. These data reinforce the need to adhere to chlamydia screening guidelines and to increase screening coverage in those at risk.


Assuntos
Infecções por Chlamydia , Gonorreia , Infecções por Chlamydia/diagnóstico , Infecções por Chlamydia/epidemiologia , Chlamydia trachomatis , Feminino , Humanos , Programas de Rastreamento , Prevalência , Fatores de Risco
3.
J Fish Dis ; 44(1): 73-88, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32944982

RESUMO

The Tasmanian salmon industry had remained relatively free of major viral diseases until the emergence of pilchard orthomyxovirus (POMV). Originally isolated from wild pilchards, POMV is of concern to the industry as it can cause high mortality in farmed salmon (Salmo salar). Field observations suggest the virus can spread from pen to pen and between farms, but evidence of passive transmission in sea water was unclear. Our aim was to establish whether direct contact between infected and naïve fish was required for transmission, and to examine viral infection dynamics. Atlantic salmon post-smolts were challenged with POMV by either direct exposure via cohabitation or indirect exposure via virus-contaminated sea water. POMV was transmissible in sea water and direct contact between fish was not required for infection. Head kidney and heart presented the highest viral loads in early stages of infection. POMV survivors presented low viral loads in most tissues, but these remained relatively high in gills. A consistent feature was the infiltration of viral-infected melanomacrophages in different tissues, suggesting an important role of these in the immune response to POMV. Understanding POMV transmission and host-pathogen interactions is key for the development of improved surveillance tools, transmission models and ultimately for disease prevention.


Assuntos
Doenças dos Peixes/transmissão , Infecções por Orthomyxoviridae/veterinária , Salmo salar/virologia , Água do Mar/virologia , Animais , Feminino , Doenças dos Peixes/virologia , Brânquias/virologia , Rim Cefálico/virologia , Coração/virologia , Orthomyxoviridae , Infecções por Orthomyxoviridae/transmissão , Carga Viral
4.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802405

RESUMO

Histone deacetylase 2 (HDAC2) is a major HDAC protein in the adult brain and has been shown to regulate many neuronal genes. The aberrant expression of HDAC2 and subsequent dysregulation of neuronal gene expression is implicated in neurodegeneration and brain aging. Human induced pluripotent stem cell-derived neurons (hiPSC-Ns) are widely used models for studying neurodegenerative disease mechanisms, but the role of HDAC2 in hiPSC-N differentiation and maturation has not been explored. In this study, we show that levels of HDAC2 progressively decrease as hiPSCs are differentiated towards neurons. This suppression of HDAC2 inversely corresponds to an increase in neuron-specific isoforms of Endophilin-B1, a multifunctional protein involved in mitochondrial dynamics. Expression of neuron-specific isoforms of Endophilin-B1 is accompanied by concomitant expression of a neuron-specific alternative splicing factor, SRRM4. Manipulation of HDAC2 and Endophilin-B1 using lentiviral approaches shows that the knock-down of HDAC2 or the overexpression of a neuron-specific Endophilin-B1 isoform promotes mitochondrial elongation and protects against cytotoxic stress in hiPSC-Ns, while HDAC2 knock-down specifically influences genes regulating mitochondrial dynamics and synaptogenesis. Furthermore, HDAC2 knock-down promotes enhanced mitochondrial respiration and reduces levels of neurotoxic amyloid beta peptides. Collectively, our study demonstrates a role for HDAC2 in hiPSC-neuronal differentiation, highlights neuron-specific isoforms of Endophilin-B1 as a marker of differentiating hiPSC-Ns and demonstrates that HDAC2 regulates key neuronal and mitochondrial pathways in hiPSC-Ns.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Histona Desacetilase 2/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Aciltransferases/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Mitocôndrias/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Isoformas de Proteínas/metabolismo
5.
Dis Aquat Organ ; 139: 51-68, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32351236

RESUMO

Since 2012, an orthomyxo-like virus has been consistently linked to epizootics in marine farmed Atlantic salmon in Tasmania, Australia. Here we describe the properties of the virus, designated the pilchard orthomyxovirus (POMV), in cell culture and present data verifying its direct role in a disease of Atlantic salmon. In infected cells, viral RNA was detectable in both the nucleus and cytoplasm, consistent with the replication cycle of an orthomyxovirus. Viral replication in vitro was temperature-dependent (within a range of 10-20°C), and yields of virus were typically in excess of 107 TCID50 ml-1. In controlled infection trials, cell culture-derived POMV produced significant morbidity in Atlantic salmon fry, pre-smolt and post-smolt. In all cases, the development of disease was rapid, with moribund fish detected within 5 d of direct exposure to POMV, and maximum cumulative morbidity occurring within 4 wk. The experimentally infected fish developed a characteristic suite of gross and microscopic pathological changes, which were consistent with those observed in Atlantic salmon overtly affected by POMV-associated disease on sea farms. These included necrotic lesions across multiple organs that were directly associated with the presence of the virus. Together, our observations indicate that POMV is an endemic virus likely transmitted from wild fish to farmed Atlantic salmon in Tasmania. The virus is pathogenic to Atlantic salmon in freshwater and marine environments and causes a disease that we have named salmon orthomyxoviral necrosis.


Assuntos
Orthomyxoviridae , Salmo salar , Animais , Água Doce , Tasmânia
6.
Magn Reson Chem ; 58(12): 1187-1192, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32307736

RESUMO

The instructional organic chemistry laboratory has been substantially improved through the implementation of benchtop NMR analysis. When used in conjunction with unknown reaction components in multi-outcome experiments, NMR analysis transforms the laboratory exercise into an investigative inquiry wherein students elucidate structures for their products and thereby deduce their unknown reaction components. This analytical approach closely models the research laboratory and is a valuable preparatory tool for undergraduate researchers. Three newly developed multi-outcome experiments based upon the Diels-Alder cycloaddition, the synthesis of carboxylic amides, and the Friedel-Crafts alkylation are herein described to illustrate the utility of benchtop NMR analysis in the instructional laboratory.

7.
Glia ; 67(8): 1558-1570, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31058365

RESUMO

GPR124 is involved in embryonic development and remains expressed by select organs. The importance of GPR124 during development suggests that its aberrant expression might participate in tumor growth. Here we show that both increases and decreases in GPR124 expression in glioblastoma cells reduce cell proliferation by differentially altering the duration mitotic progression. Using mass spectrometry-based proteomics, we discovered that GPR124 interacts with ch-TOG, a known regulator of both microtubule (MT)-plus-end assembly and mitotic progression. Accordingly, changes in GPR124 expression and ch-TOG similarly affect MT assembly measured by real-time microscopy in cells. Our study describes a novel molecular interaction involving GPR124 and ch-TOG at the plasma membrane that controls glioblastoma cell proliferation by modifying MT assembly rates and controlling the progression of distinct phases of mitosis.


Assuntos
Neoplasias Encefálicas/metabolismo , Proliferação de Células/fisiologia , Glioblastoma/metabolismo , Microtúbulos/metabolismo , Mitose/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Adulto , Encéfalo/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade
8.
Infect Immun ; 86(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29133348

RESUMO

Chlamydia has been detected in the gastrointestinal tracts of humans and animals. We now report that gastrointestinal Chlamydia muridarum is able to induce robust transmucosal protection in mice. C. muridarum colonization in the gastrointestinal tract correlated with both a shortened course of C. muridarum genital tract infection and stronger protection against subsequent genital tract challenge infection. Mice preinoculated intragastrically with C. muridarum became highly resistant to subsequent C. muridarum infection in the genital tract, resulting in prevention of pathology in the upper genital tract. The transmucosal protection in the genital tract was rapidly induced, durable, and dependent on major histocompatibility complex (MHC) class II antigen presentation but not MHC class I antigen presentation. Although a deficiency in CD4+ T cells only partially reduced the transmucosal protection, depletion of CD4+ T cells from B cell-deficient mice completely abolished the protection, suggesting a synergistic role of both CD4+ T and B cells in the gastrointestinal C. muridarum-induced transmucosal immunity. However, the same protective immunity did not significantly affect C. muridarum colonization in the gastrointestinal tract. The long-lasting colonization with C. muridarum was restricted to the gastrointestinal tract and was nonpathogenic to either gastrointestinal or extragastrointestinal tissues. Furthermore, gastrointestinal C. muridarum did not alter the gut microbiota or the development of gut mucosal resident memory T cell responses to a nonchlamydial infection. Thus, Chlamydia may be developed into a safe and orally deliverable replicating vaccine for inducing transmucosal protection.


Assuntos
Vacinas Bacterianas/imunologia , Infecções por Chlamydia/prevenção & controle , Chlamydia muridarum/imunologia , Trato Gastrointestinal/microbiologia , Infecções do Sistema Genital/microbiologia , Administração Oral , Animais , Apresentação de Antígeno , Linfócitos B/imunologia , Vacinas Bacterianas/administração & dosagem , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Antígenos de Histocompatibilidade Classe II/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
9.
Infect Immun ; 86(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29661932

RESUMO

Some members of the genus Chlamydia, including the human pathogen Chlamydia trachomatis, infect multiple tissues, including the genital and gastrointestinal (GI) tracts. However, it is unknown if bacterial targeting to these sites is mediated by multifunctional or distinct chlamydial factors. We previously showed that disruption of individual large clostridial toxin homologs encoded within the Chlamydia muridarum plasticity zone were not critical for murine genital tract infection. Here, we assessed whether cytotoxin genes contribute to C. muridarum GI tropism. Infectivity and shedding of wild-type (WT) C. muridarum and three mutants containing nonsense mutations in different cytotoxin genes, tc0437, tc0438, and tc0439, were compared in mouse genital and GI infection models. One mutant, which had a nonsense mutation in tc0439, was highly attenuated for GI infection and had a GI 50% infectious dose (ID50) that was 1,000 times greater than that of the WT. GI inoculation with this mutant failed to elicit anti-chlamydial antibodies or to protect against subsequent genital tract infection. Genome sequencing of the tc0439 mutant revealed additional chromosomal mutations, and phenotyping of additional mutants suggested that the GI attenuation might be linked to a nonsense mutation in tc0600 The molecular mechanism underlying this dramatic difference in tissue-tropic virulence is not fully understood. However, isolation of these mutants demonstrates that distinct chlamydial chromosomal factors mediate chlamydial tissue tropism and provides a basis for vaccine initiatives to isolate chlamydia strains that are attenuated for genital infection but retain the ability to colonize the GI tract and elicit protective immune responses.


Assuntos
Infecções por Chlamydia/etiologia , Chlamydia muridarum/patogenicidade , Cromossomos/fisiologia , Gastroenteropatias/etiologia , Infecções do Sistema Genital/etiologia , Tropismo , Animais , Infecções por Chlamydia/imunologia , Códon sem Sentido , Citotoxinas/genética , Feminino , Gastroenteropatias/imunologia , Trato Gastrointestinal/microbiologia , Genitália/microbiologia , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único , Infecções do Sistema Genital/imunologia
10.
J Infect Dis ; 215(11): 1653-1656, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28444306

RESUMO

Chlamydia trachomatis elementary body enzyme-linked immunosorbent assay (ELISA) was used to investigate serum anti-CT immunoglobulin G1 (IgG1; long-lived response) and immunoglobulin G3 (IgG3; short-lived response indicating more recent infection) from treatment (enrollment) and 6-month follow-up visits in 77 women previously classified as having spontaneous resolution of chlamydia. Of these women, 71.4% were IgG1+IgG3+, consistent with more recent chlamydia resolution. 15.6% were IgG3- at both visits, suggesting absence of recent chlamydia. Using elementary body ELISA, we demonstrated approximately 1 in 6 women classified as having spontaneous resolution of chlamydia might have been exposed to C. trachomatis but not infected. Further, we classified their possible infection stage.


Assuntos
Anticorpos Antibacterianos/sangue , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/imunologia , Imunoglobulina G/sangue , Adolescente , Adulto , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Humanos , Adulto Jovem
11.
Infect Immun ; 85(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28739831

RESUMO

Determining the effector populations involved in humoral protection against genital chlamydia infection is crucial to development of an effective chlamydial vaccine. Antibody has been implicated in protection studies in multiple animal models, and we previously showed that the passive transfer of immune serum alone does not confer immunity in the mouse. Using the Chlamydia muridarum model of genital infection, we demonstrate a protective role for both Chlamydia-specific immunoglobulin G (IgG) and polymorphonuclear neutrophils and show the importance of an antibody/effector cell interaction in mediating humoral immunity. While neutrophils were found to contribute significantly to antibody-mediated protection in vivo, natural killer (NK) cells were dispensable for protective immunity. Furthermore, gamma interferon (IFN-γ)-stimulated primary peritoneal neutrophils (PPNs) killed chlamydiae in vitro in an antibody-dependent manner. The results from this study support the view that an IFN-γ-activated effector cell population cooperates with antibody to protect against genital chlamydia and establish neutrophils as a key effector cell in this response.


Assuntos
Anticorpos Antibacterianos/imunologia , Infecções por Chlamydia/imunologia , Chlamydia muridarum/imunologia , Doenças dos Genitais Femininos/imunologia , Genitália/imunologia , Imunidade Humoral , Neutrófilos/imunologia , Animais , Anticorpos Antibacterianos/sangue , Linfócitos T CD4-Positivos/imunologia , Infecções por Chlamydia/prevenção & controle , Feminino , Doenças dos Genitais Femininos/prevenção & controle , Genitália/microbiologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Interferon gama/imunologia , Interferon gama/farmacologia , Células Matadoras Naturais/imunologia , Camundongos , Neutrófilos/efeitos dos fármacos , Infecções Sexualmente Transmissíveis/imunologia , Infecções Sexualmente Transmissíveis/microbiologia , Infecções Sexualmente Transmissíveis/prevenção & controle
12.
Infect Immun ; 84(11): 3232-3242, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27600502

RESUMO

Defining the mechanisms of immunity conferred by the combination of antibody and CD4+ T cells is fundamental to designing an efficacious chlamydial vaccine. Using the Chlamydia muridarum genital infection model of mice, which replicates many features of human C. trachomatis infection and avoids the characteristic low virulence of C. trachomatis in the mouse, we previously demonstrated a significant role for antibody in immunity to chlamydial infection. We found that antibody alone was not protective. Instead, protection appeared to be conferred through an undefined antibody-cellular interaction. Using gene knockout mice and in vivo cellular depletion methods, our data suggest that antibody-mediated protection is dependent on the activation of an effector cell population in genital tract tissues by CD4+ T cells. Furthermore, the CD4+ T cell-secreted cytokine interferon-gamma (IFNγ) was found to be a key component of the protective antibody response. The protective function of IFNγ was not related to the immunoglobulin class or magnitude of the Chlamydia-specific antibody response or to recruitment of an effector cell population to genital tract tissue. Rather, IFNγ appears to be necessary for activation of the effector cell population that functions in antibody-mediated chlamydial immunity. Our results confirm the central role of antibody in immunity to chlamydia reinfection, and demonstrate a key function for IFNγ in antibody-mediated protection.

13.
Brain ; 138(Pt 7): 2005-19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25981964

RESUMO

Endophilin-B1, also known as Bax-interacting factor 1 (Bif-1, and encoded by SH3GLB1), is a multifunctional protein involved in apoptosis, autophagy and mitochondrial function. We recently described a unique neuroprotective role for neuron-specific alternatively spliced isoforms of endophilin-B1. To examine whether endophilin-B1-mediated neuroprotection could be a novel therapeutic target for Alzheimer's disease we used a double mutant amyloid precursor protein and presenilin 1 (APPswe/PSEN1dE9) mouse model of Alzheimer's disease and observed that expression of neuron-specific endophilin-B1 isoforms declined with disease progression. To determine if this reduction in endophilin-B1 has a functional role in Alzheimer's disease pathogenesis, we crossed endophilin-B1(-/-) mice with APPswe/PSEN1dE9 mice. Deletion of endophilin-B1 accelerated disease onset and progression in 6-month-old APPswe/PSEN1dE9/endophilin-B1(-/-) mice, which showed more plaques, astrogliosis, synaptic degeneration, cognitive impairment and mortality than APPswe/PSEN1dE9 mice. In mouse primary cortical neuron cultures, overexpression of neuron-specific endophilin-B1 isoforms protected against amyloid-ß-induced apoptosis and mitochondrial dysfunction. Additionally, protein and mRNA levels of neuron-specific endophilin-B1 isoforms were also selectively decreased in the cerebral cortex and in the synaptic compartment of patients with Alzheimer's disease. Flow sorting of synaptosomes from patients with Alzheimer's disease demonstrated a negative correlation between amyloid-ß and endophilin-B1 levels. The importance of endophilin-B1 in neuronal function was further underscored by the development of synaptic degeneration and cognitive and motor impairment in endophilin-B1(-/-) mice by 12 months. Our findings suggest that endophilin-B1 is a key mediator of a feed-forward mechanism of Alzheimer's disease pathogenesis where amyloid-ß reduces neuron-specific endophilin-B1, which in turn enhances amyloid-ß accumulation and neuronal vulnerability to stress.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Neurônios/patologia , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Immunoblotting , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinaptossomos/metabolismo , Sinaptossomos/patologia
14.
J Neurosci ; 34(7): 2674-83, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24523556

RESUMO

Bax-interacting factor 1 (Bif-1, also known as endophilin B1) is a multifunctional protein involved in the regulation of apoptosis, mitochondrial morphology, and autophagy. Previous studies in non-neuronal cells have shown that Bif-1 is proapoptotic and promotes mitochondrial fragmentation. However, the role of Bif-1 in postmitotic neurons has not been investigated. In contrast to non-neuronal cells, we now report that in neurons Bif-1 promotes viability and mitochondrial elongation. In mouse primary cortical neurons, Bif-1 knockdown exacerbated apoptosis induced by the DNA-damaging agent camptothecin. Neurons from Bif-1-deficient mice contained fragmented mitochondria and Bif-1 knockdown in wild-type neurons also resulted in fragmented mitochondria which were more depolarized, suggesting mitochondrial dysfunction. During ischemic stroke, Bif-1 expression was downregulated in the penumbra of wild-type mice. Consistent with Bif-1 being required for neuronal viability, Bif-1-deficient mice developed larger infarcts and an exaggerated astrogliosis response following ischemic stroke. Together, these data suggest that, in contrast to non-neuronal cells, Bif-1 is essential for the maintenance of mitochondrial morphology and function in neurons, and that loss of Bif-1 renders neurons more susceptible to apoptotic stress. These unique actions may relate to the presence of longer, neuron-specific Bif-1 isoforms, because only these forms of Bif-1 were able to rescue deficiencies caused by Bif-1 suppression. This finding not only demonstrates an unexpected role for Bif-1 in the nervous system but this work also establishes Bif-1 as a potential therapeutic target for the treatment of neurological diseases, especially degenerative disorders characterized by alterations in mitochondrial dynamics.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/fisiologia , Mitocôndrias/ultraestrutura , Neurônios/metabolismo , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Imunofluorescência , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Neurônios/ultraestrutura , Isoformas de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
15.
Biochim Biophys Acta ; 1842(8): 1186-97, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24412988

RESUMO

The p53 tumor suppressor plays a central role in dictating cell survival and death as a cellular sensor for a myriad of stresses including DNA damage, oxidative and nutritional stress, ischemia and disruption of nucleolar function. Activation of p53-dependent apoptosis leads to mitochondrial apoptotic changes via the intrinsic and extrinsic pathways triggering cell death execution most notably by release of cytochrome c and activation of the caspase cascade. Although it was previously believed that p53 induces apoptotic mitochondrial changes exclusively through transcription-dependent mechanisms, recent studies suggest that p53 also regulates apoptosis via a transcription-independent action at the mitochondria. Recent evidence further suggests that p53 can regulate necrotic cell death and autophagic activity including mitophagy. An increasing number of cytosolic and mitochondrial proteins involved in mitochondrial metabolism and respiration are regulated by p53, which influences mitochondrial ROS production as well. Cellular redox homeostasis is also directly regulated by p53 through modified expression of pro- and anti-oxidant proteins. Proper regulation of mitochondrial size and shape through fission and fusion assures optimal mitochondrial bioenergetic function while enabling adequate mitochondrial transport to accommodate local energy demands unique to neuronal architecture. Abnormal regulation of mitochondrial dynamics has been increasingly implicated in neurodegeneration, where elevated levels of p53 may have a direct contribution as the expression of some fission/fusion proteins are directly regulated by p53. Thus, p53 may have a much wider influence on mitochondrial integrity and function than one would expect from its well-established ability to transcriptionally induce mitochondrial apoptosis. However, much of the evidence demonstrating that p53 can influence mitochondria through nuclear, cytosolic or intra-mitochondrial sites of action has yet to be confirmed in neurons. Nonetheless, as mitochondria are essential for supporting normal neuronal functions and in initiating/propagating cell death signaling, it appears certain that the mitochondria-related functions of p53 will have broader implications than previously thought in acute and progressive neurological conditions, providing new therapeutic targets for treatment.


Assuntos
Mitocôndrias/metabolismo , Neurônios/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Autofagia , Humanos , Dinâmica Mitocondrial
16.
Infect Immun ; 83(7): 2870-81, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25939505

RESUMO

Pathogenically diverse Chlamydia spp. can have surprisingly similar genomes. Chlamydia trachomatis isolates that cause trachoma, sexually transmitted genital tract infections (chlamydia), and invasive lymphogranuloma venereum (LGV) and the murine strain Chlamydia muridarum share 99% of their gene content. A region of high genomic diversity between Chlamydia spp. termed the plasticity zone (PZ) may encode niche-specific virulence determinants that dictate pathogenic diversity. We hypothesized that PZ genes might mediate the greater virulence and gamma interferon (IFN-γ) resistance of C. muridarum compared to C. trachomatis in the murine genital tract. To test this hypothesis, we isolated and characterized a series of C. muridarum PZ nonsense mutants. Strains with nonsense mutations in chlamydial cytotoxins, guaBA-add, and a phospholipase D homolog developed normally in cell culture. Two of the cytotoxin mutants were less cytotoxic than the wild type, suggesting that the cytotoxins may be functional. However, none of the PZ nonsense mutants exhibited increased IFN-γ sensitivity in cell culture or were profoundly attenuated in a murine genital tract infection model. Our results suggest that C. muridarum PZ genes are transcribed--and some may produce functional proteins--but are dispensable for infection of the murine genital tract.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia muridarum/genética , Chlamydia muridarum/fisiologia , Genoma Bacteriano , Fatores de Virulência/genética , Animais , Infecções por Chlamydia/patologia , Chlamydia trachomatis/genética , Chlamydia trachomatis/fisiologia , Códon sem Sentido , Análise Mutacional de DNA , Feminino , Camundongos Endogâmicos C57BL , Virulência
17.
J Neurosci ; 33(4): 1357-65, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23345212

RESUMO

Maintaining proper mitochondrial length is essential for normal mitochondrial function in neurons. Mitochondrial fragmentation has been associated with neuronal cell death caused by a variety of experimental toxic stressors. Despite the fact that oxidative stress is a hallmark of neurodegenerative conditions and aging and the resulting activation of p53 is believed to contribute to the neuropathology, little is still known regarding changes in mitochondrial morphology in p53-dependent neuronal death. Therefore, we specifically addressed the relationship between genotoxic stress, p53 activation, and the regulation of mitochondrial morphology in neurons. In cultured postnatal mouse cortical neurons, treatment with the DNA-damaging agent camptothecin (CPT) resulted in elongated mitochondria, in contrast to fragmented mitochondria observed upon staurosporine and glutamate treatment. In fibroblasts, however, CPT resulted in fragmented mitochondria. CPT treatment in neurons suppressed expression of the mitochondrial fission protein Drp1 and the E3 ubiquitin ligase parkin. The presence of elongated mitochondria and the declines in Drp1 and parkin expression occurred before the commitment point for apoptosis. The CPT-induced changes in Drp1 and parkin were not observed in p53-deficient neurons, while p53 overexpression alone was sufficient to reduce the expression of the two proteins. Elevating Drp1 or parkin expression before CPT treatment enhanced neuronal viability and restored a normal pattern of mitochondrial morphology. The present findings demonstrate that genotoxic stress in neurons results in elongated mitochondria in contrast to fission induced by other forms of stress, and p53-dependent declines in Drp1 and parkin levels contribute to altered mitochondrial morphology and cell death.


Assuntos
Dano ao DNA/fisiologia , GTP Fosfo-Hidrolases/biossíntese , Proteínas Associadas aos Microtúbulos/biossíntese , Mitocôndrias/patologia , Proteínas Mitocondriais/biossíntese , Neurônios/patologia , Ubiquitina-Proteína Ligases/biossíntese , Animais , Morte Celular/fisiologia , Células Cultivadas , Dinaminas , Imunofluorescência , GTP Fosfo-Hidrolases/genética , Humanos , Immunoblotting , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Mitocondriais/genética , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética
18.
J Neurochem ; 129(3): 509-15, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24147654

RESUMO

The administration of pan histone deacetylase (HDAC) inhibitors reduces ischemic damage to the CNS, both in vitro and in animal models of stroke, via mechanisms which we are beginning to understand. The acetylation of p53 is regulated by Class I HDACs and, because p53 appears to play a role in ischemic pathology, the purpose of this study was to discover, using an in vitro white matter ischemia model and an in vivo cerebral ischemia model, if neuroprotection mediated by HDAC inhibition depended on p53 expression. Optic nerves were excised from wild-type and p53-deficient mice, and then subjected to oxygen-glucose deprivation in the presence and absence of a specific inhibitor of Class I HDACs (MS-275, entinostat) while compound action potentials were recorded. Furthermore, transient focal ischemia was imposed on wild-type and p53-deficient mice, which were subsequently treated with MS-275. Interestingly, and in both scenarios, the beneficial effects of MS-275 were most pronounced when p53 was absent. These results suggest that modulation of p53 activity is not responsible for MS-275-mediated neuroprotection, and further illustrate how HDAC inhibitors variably influence p53 and associated apoptotic pathways. Optic nerves from wild-type and p53-deficient mice, engineered to express cyan fluorescent protein (CFP) in neuronal mitochondria, were subjected to oxygen-glucose deprivation (OGD) in the presence and absence of a specific inhibitor of Class I histone deacetylases. The protective effect of MS-275 was evidenced by mitochondrial preservation, and this was most pronounced in the absence of p53.


Assuntos
Benzamidas/farmacologia , Isquemia Encefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Piridinas/farmacologia , Proteína Supressora de Tumor p53/deficiência , Potenciais de Ação/efeitos dos fármacos , Animais , Western Blotting , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/efeitos dos fármacos , Histona Desacetilases/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/patologia
19.
J Infect Dis ; 206(12): 1836-43, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23045619

RESUMO

Renewed interest in chlamydia vaccination has revealed the need for a greater understanding of the seroprevalence of chlamydial infection in US populations. We used a Chlamydia trachomatis elementary body (EB)-based enzyme-linked immunosorbent assay to define the characteristics of the humoral immune response and to determine seroprevalence. Two groups were analyzed: one consisting of patients with current, laboratory confirmed, genital chlamydial infection (n = 98) and one group of individuals whose chlamydia infection history was unknown (n = 367). C. trachomatis seropositivity was detected in 90% of the infected group and in 31% of the chlamydia-unknown group. IgG1 and IgG3 comprised the predominant anti-Chlamydia serum antibody responses. Serum IgA1 responses were variably positive, and individuals were rarely positive for anti-chlamydia IgG2, IgG4 or IgA2. The magnitude of the IgG1 and IgG3 responses was greatest in female and African American individuals and was sustained for at least 6 months. Antibody responses were not serovar restricted or confounded by Chlamydia pneumoniae cross-reactivity.


Assuntos
Anticorpos Antibacterianos/sangue , Infecções por Chlamydia/epidemiologia , Chlamydia trachomatis/imunologia , Adolescente , Adulto , Antígenos de Bactérias , Infecções por Chlamydia/imunologia , Ensaio de Imunoadsorção Enzimática , Etnicidade , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Estudos Soroepidemiológicos , Fatores Sexuais , Estados Unidos/epidemiologia , Adulto Jovem
20.
J Neurosci ; 31(11): 3990-9, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21411642

RESUMO

The importance of white matter (WM) injury to stroke pathology has been underestimated in experimental animal models and this may have contributed to the failure to translate potential therapeutics into the stroke clinic. Histone deacetylase (HDAC) inhibitors are neuroprotective and also promote neurogenesis. These properties make them ideal candidates for stroke therapy. In a pure WM tract (isolated mouse optic nerve), we show that pan- and class I-specific HDAC inhibitors, administered before or after a period of oxygen and glucose deprivation (OGD), promote functional recovery of axons and preserve WM cellular architecture. This protection correlates with the upregulation of an astrocyte glutamate transporter, delayed and reduced glutamate accumulation during OGD, preservation of axonal mitochondria and oligodendrocytes, and maintenance of ATP levels. Interestingly, the expression of HDACs 1, 2, and 3 is localized to astrocytes, suggesting that changes in glial cell gene transcription and/or protein acetylation may confer protection to axons. Our findings suggest that a therapeutic opportunity exists for the use of HDAC inhibitors, targeting mitochondrial energy regulation and excitotoxicity in ischemic WM injury.


Assuntos
Trifosfato de Adenosina/metabolismo , Isquemia Encefálica/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Análise de Variância , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Imuno-Histoquímica , Masculino , Camundongos , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa