Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 230(4): e777-e788, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-38654105

RESUMO

BACKGROUND: Klebsiella pneumoniae is capable of resistance to ß-lactam antibiotics through expression of ß-lactamases (both chromosomal and plasmid-encoded) and downregulation of outer membrane porins. However, the extent to which these mechanisms interplay in a resistant phenotype is not well understood. The purpose of this study was to determine the extent to which ß-lactamases and outer membrane porins affected ß-lactam resistance. METHODS: Minimum inhibitory concentrations (MICs) to ß-lactams and inhibitor combinations were determined by agar dilution or Etest. Outer membrane porin production was evaluated by Western blot of outer membrane fractions. ß-lactamase carriage was determined by whole genome sequencing and expression evaluated by real-time reverse-transcription polymerase chain reaction. RESULTS: Plasmid-encoded ß--lactamases were important for cefotaxime and ceftazidime resistance. Elevated expression of chromosomal SHV was important for ceftolozane-tazobactam resistance. Loss of outer membrane porins was predictive of meropenem resistance. Extended-spectrum ß-lactamases and plasmid-encoded AmpCs (pAmpCs) in addition to porin loss were sufficient to confer resistance to the third-generation cephalosporins, piperacillin-tazobactam, ceftolozane-tazobactam, and meropenem. pAmpCs (CMY-2 and DHA) alone conferred resistance to piperacillin-tazobactam. CONCLUSIONS: Detection of a resistance gene by whole genome sequencing was not sufficient to predict resistance to all antibiotics tested. Some ß-lactam resistance was dependent on the expression of both plasmid-encoded and chromosomal ß-lactamases and loss of porins.


Assuntos
Antibacterianos , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Plasmídeos , Porinas , beta-Lactamases , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/enzimologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Porinas/genética , Porinas/metabolismo , Plasmídeos/genética , Humanos , Infecções por Klebsiella/microbiologia , Resistência beta-Lactâmica/genética , beta-Lactamas/farmacologia , Sequenciamento Completo do Genoma
3.
J Antimicrob Chemother ; 51(4): 791-802, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12654751

RESUMO

Serratia marcescens encodes an inducible, chromosomal beta-lactamase, ampC. Studies addressing the regulation of inducible ampC genes have focused primarily on Enterobacter cloacae and Citrobacter freundii. The purpose of this study was to clone and sequence the ampC, ampR and intergenic region of S. marcescens and examine both inducible and basal level ampC expression. Sequence analysis of the S. marcescens ampC gene identified an extended 5' untranslated region (UTR) of 126 nucleotides, which formed a prominent stem-loop structure. Induction of ampC expression required AmpR, and the start of transcription was determined using primer extension analysis. In vivo half-life analysis revealed that the half-life of the S. marcescens ampC transcript was 7 min. Confirmation of the in vivo half-life and the role of the stem-loop structure in the 5' UTR was demonstrated by comparing transcript half-life and luciferase expression between a wild-type (WT) and a 5' UTR stem-loop deletion mutant. These data demonstrated that the stem-loop structure was involved in transcript stability. Taken together, these findings indicate that constitutive expression of S. marcescens ampC is regulated by both transcriptional initiation and post-transcriptional events.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica/fisiologia , Serratia marcescens/genética , beta-Lactamases/genética , Regiões 5' não Traduzidas/genética , Northern Blotting , Clonagem Molecular , DNA Bacteriano/genética , Digoxigenina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Deleção de Genes , Cinética , Luciferases/genética , Plasmídeos/genética , RNA , RNA Bacteriano/biossíntese , RNA Bacteriano/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa