Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(41): e2200511119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36194631

RESUMO

Mind blanking (MB) is a waking state during which we do not report any mental content. The phenomenology of MB challenges the view of a constantly thinking mind. Here, we comprehensively characterize the MB's neurobehavioral profile with the aim to delineate its role during ongoing mentation. Using functional MRI experience sampling, we show that the reportability of MB is less frequent, faster, and with lower transitional dynamics than other mental states, pointing to its role as a transient mental relay. Regarding its neural underpinnings, we observed higher global signal amplitude during MB reports, indicating a distinct physiological state. Using the time-varying functional connectome, we show that MB reports can be classified with high accuracy, suggesting that MB has a unique neural composition. Indeed, a pattern of global positive-phase coherence shows the highest similarity to the connectivity patterns associated with MB reports. We interpret this pattern's rigid signal architecture as hindering content reportability due to the brain's inability to differentiate signals in an informative way. Collectively, we show that MB has a unique neurobehavioral profile, indicating that nonreportable mental events can happen during wakefulness. Our results add to the characterization of spontaneous mentation and pave the way for more mechanistic investigations of MB's phenomenology.


Assuntos
Mapeamento Encefálico , Conectoma , Pensamento , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética
2.
J Neurosci ; 43(40): 6807-6815, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37643862

RESUMO

Mind-blanking (MB) is termed as the inability to report our immediate-past mental content. In contrast to mental states with reportable content, such as mind-wandering or sensory perceptions, the neural correlates of MB started getting elucidated only recently. A notable particularity that pertains to MB studies is the way MB is instructed for reporting, like by deliberately asking participants to "empty their minds." Such instructions were shown to induce fMRI activations in frontal brain regions, typically associated with metacognition and self-evaluative processes, suggesting that MB may be a result of intentional mental content suppression. Here, we aim at examining this hypothesis by determining the neural correlates of MB without induction. Using fMRI combined with experience-sampling in 31 participants (22 female), univariate analysis of MB reports revealed deactivations in occipital, frontal, parietal, and thalamic areas, but no activations in prefrontal regions. These findings were confirmed using Bayesian region-of-interest analysis on areas previously shown to be implicated in induced MB, where we report evidence for frontal deactivations during MB reports compared with other mental states. Contrast analysis between reports of MB and content-oriented mental states also revealed deactivations in the left angular gyrus. We propose that these effects characterize a neuronal profile of MB, where key thalamocortical nodes are unable to communicate and formulate reportable content. Collectively, we show that study instructions for MB lead to differential neural activation. These results provide mechanistic insights linked to the phenomenology of MB and point to the possibility of MB being expressed in different forms.SIGNIFICANCE STATEMENT This study explores how brain activity changes when individuals report unidentifiable thoughts, a phenomenon known as mind-blanking (MB). It aims to detect changes in brain activations and deactivations when MB is reported spontaneously, as opposed to the neural responses that have been previously reported when MB is induced. By means of brain imaging and experience-sampling, the study points to reduced brain activity in a wide number of regions, including those mesio-frontally which were previously detected as activated during induced MB. These results enhance our understanding of the complexity of spontaneous thinking and contribute to broader discussions on consciousness and reportable experience.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Feminino , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Estado de Consciência/fisiologia , Lobo Parietal/fisiologia , Imageamento por Ressonância Magnética
3.
Artigo em Inglês | MEDLINE | ID: mdl-38588855

RESUMO

BACKGROUND: Psilocybin is a widely studied psychedelic substance that leads to the psychedelic state, a specific altered state of consciousness. To date, the relationship between the psychedelic state's neurobiological and experiential patterns remains undercharacterized because they are often analyzed separately. We investigated the relationship between neurobiological and experiential patterns after psilocybin by focusing on the link between dynamic cerebral connectivity and retrospective questionnaire assessment. METHODS: Healthy participants were randomized to receive either psilocybin (n = 22) or placebo (n = 27) and scanned for 6 minutes in an eyes-open resting state during the peak subjective drug effect (102 minutes posttreatment) in ultrahigh field 7T magnetic resonance imaging. The 5-Dimensional Altered States of Consciousness Rating Scale was administered 360 minutes after drug intake. RESULTS: Under psilocybin, there were alterations across all dimensions of the 5-Dimensional Altered States of Consciousness Rating Scale and widespread increases in averaged brain functional connectivity. Time-varying functional connectivity analysis unveiled a recurrent hyperconnected pattern characterized by low blood oxygen level-dependent signal amplitude, suggesting heightened cortical arousal. In terms of neuroexperiential links, canonical correlation analysis showed higher transition probabilities to the hyperconnected pattern with feelings of oceanic boundlessness and secondly with visionary restructuralization. CONCLUSIONS: Psilocybin generates profound alterations at both the brain and the experiential levels. We suggest that the brain's tendency to enter a hyperconnected-hyperarousal pattern under psilocybin represents the potential to entertain variant mental associations. These findings illuminate the intricate interplay between brain dynamics and subjective experience under psilocybin, thereby providing insights into the neurophysiology and neuroexperiential qualities of the psychedelic state.


Assuntos
Conectoma , Alucinógenos , Imageamento por Ressonância Magnética , Psilocibina , Humanos , Psilocibina/farmacologia , Psilocibina/administração & dosagem , Alucinógenos/administração & dosagem , Alucinógenos/farmacologia , Masculino , Adulto , Feminino , Adulto Jovem , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Estado de Consciência/efeitos dos fármacos , Estado de Consciência/fisiologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia
4.
Front Neurosci ; 18: 1306344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419667

RESUMO

Background: Disconnected consciousness describes a state in which subjective experience (i.e., consciousness) becomes isolated from the external world. It appears frequently during sleep or sedation, when subjective experiences remain vivid but are unaffected by external stimuli. Traditional methods of differentiating connected and disconnected consciousness, such as relying on behavioral responsiveness or on post-anesthesia reports, have demonstrated limited accuracy: unresponsiveness has been shown to not necessarily equate to unconsciousness and amnesic effects of anesthesia and sleep can impair explicit recollection of events occurred during sleep/sedation. Due to these methodological challenges, our understanding of the neural mechanisms underlying sensory disconnection remains limited. Methods: To overcome these methodological challenges, we employ a distinctive strategy by combining a serial awakening paradigm with auditory stimulation during mild propofol sedation. While under sedation, participants are systematically exposed to auditory stimuli and questioned about their subjective experience (to assess consciousness) and their awareness of the sounds (to evaluate connectedness/disconnectedness from the environment). The data collected through interviews are used to categorize participants into connected and disconnected consciousness states. This method circumvents the requirement for responsiveness in assessing consciousness and mitigates amnesic effects of anesthesia as participants are questioned while still under sedation. Functional MRI data are concurrently collected to investigate cerebral activity patterns during connected and disconnected states, to elucidate sensory disconnection neural gating mechanisms. We examine whether this gating mechanism resides at the thalamic level or results from disruptions in information propagation to higher cortices. Furthermore, we explore the potential role of slow-wave activity (SWA) in inducing disconnected consciousness by quantifying high-frequency BOLD oscillations, a known correlate of slow-wave activity. Discussion: This study represents a notable advancement in the investigation of sensory disconnection. The serial awakening paradigm effectively mitigates amnesic effects by collecting reports immediately after regaining responsiveness, while still under sedation. Ultimately, this research holds the potential to understand how sensory gating is achieved at the neural level. These biomarkers might be relevant for the development of sensitive anesthesia monitoring to avoid intraoperative connected consciousness and for the assessment of patients suffering from pathologically reduced consciousness. Clinical trial registration: European Union Drug Regulating Authorities Clinical Trials Database (EudraCT), identifier 2020-003524-17.

5.
Cortex ; 165: 119-128, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37285762

RESUMO

Lemon fragrance is known for its stimulating properties, but its mechanisms of action are not well known yet. This study aimed to examine the effect of lemon essential oil inhalation on healthy participants' alertness level and their neural correlates using magnetic resonance imaging (MRI). Twenty-one healthy men underwent functional MRI scans in different conditions: a resting state condition, a condition where they were exposed to passive lemon smelling (alternating exposure to lemon and breathing fresh air), and a control condition without lemon fragrance diffusion -the order of the last two conditions being randomized. Alertness levels were assessed immediately after each condition using the Karolinska Sleepiness Scale. Voxel-wise whole-brain global functional connectivity and graph theory analyses were computed to investigate brain functional connectivity and network topology alterations. After lemon fragrance inhalation, we observed a higher level of alertness as compared to resting state -but not compared to control condition. During lemon fragrance inhalation, we found increased global functional connectivity in the thalamus, paralleled by decreased global connectivity in several cortical regions such as precuneus, postcentral and precentral gyrus, lateral occipital cortex and paracingulate gyrus. Graph theory analysis revealed increased network integration in cortical regions typically involved in olfaction and emotion processing such as olfactory bulb, hypothalamus and thalamus, while decreased network segregation in several regions of the posterior part of the brain during olfaction as compared to resting state. The present findings suggest that lemon essential oil inhalation could increase the level of alertness.


Assuntos
Mapeamento Encefálico , Encéfalo , Masculino , Humanos , Imageamento por Ressonância Magnética/métodos , Atenção , Tálamo/diagnóstico por imagem
6.
Brain Sci ; 12(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35447961

RESUMO

Transcranial direct-current stimulation (tDCS) over the prefrontal cortex can improve signs of consciousness in patients in a minimally conscious state. Transcranial pulsed-current stimulation (tPCS) over the mastoids can modulate brain activity and connectivity in healthy controls. This study investigated the feasibility of tPCS as a therapeutic tool in patients with disorders of consciousness (DoC) and compared its neurophysiological and behavioral effects with prefrontal tDCS. This pilot study was a randomized, double-blind sham-controlled clinical trial with three sessions: bi-mastoid tPCS, prefrontal tDCS, and sham. Electroencephalography (EEG) and behavioral assessments were collected before and after each stimulation session. Post minus pre differences were compared using Kruskal-Wallis and Wilcoxon signed-rank tests. Twelve patients with DoC were included in the study (eight females, four traumatic brain injury, 50.3 ± 14 y.o., 8.8 ± 10.5 months post-injury). We did not observe any side-effects following tPCS, nor tDCS, and confirmed their feasibility and safety. We did not find a significant effect of the stimulation on EEG nor behavioral outcomes for tPCS. However, consistent with prior findings, our exploratory analyses suggest that tDCS induces behavioral improvements and an increase in theta frontal functional connectivity.

7.
Front Neurol ; 12: 687197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566837

RESUMO

Background and Objectives: Persistent post-concussive symptoms (PCS) consist of neurologic and psychological complaints persisting after a mild traumatic brain injury (mTBI). It affects up to 50% of mTBI patients, may cause long-term disability, and reduce patients' quality of life. The aim of this review was to examine the possible use of different neuroimaging modalities in PCS. Methods: Articles from Pubmed database were screened to extract studies that investigated the relationship between any neuroimaging features and symptoms of PCS. Descriptive statistics were applied to report the results. Results: A total of 80 out of 939 papers were included in the final review. Ten examined conventional MRI (30% positive finding), 24 examined diffusion weighted imaging (54.17% positive finding), 23 examined functional MRI (82.61% positive finding), nine examined electro(magneto)encephalography (77.78% positive finding), and 14 examined other techniques (71% positive finding). Conclusion: MRI was the most widely used technique, while functional techniques seem to be the most sensitive tools to evaluate PCS. The common functional patterns associated with symptoms of PCS were a decreased anti-correlation between the default mode network and the task positive network and reduced brain activity in specific areas (most often in the prefrontal cortex). Significance: Our findings highlight the importance to use functional approaches which demonstrated a functional alteration in brain connectivity and activity in most studies assessing PCS.

8.
Brain Sci ; 10(7)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708119

RESUMO

Background. Transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (lDLPFC) was reported to promote the recovery of signs of consciousness in some patients in a minimally conscious state (MCS), but its electrophysiological effects on brain activity remain poorly understood. Objective. We aimed to assess behavioral (using the Coma Recovery Scale-Revised; CRS-R) and neurophysiological effects (using high density electroencephalography; hdEEG) of lDLPFC-tDCS in patients with prolonged disorders of consciousness (DOC). Methods. In a double-blind, sham-controlled, crossover design, one active and one sham tDCS (2 mA, 20 min) were delivered in a randomized order. Directly before and after tDCS, 10 min of hdEEG were recorded and the CRS-R was administered. Results. Thirteen patients with severe brain injury were enrolled in the study. We found higher relative power at the group level after the active tDCS session in the alpha band in central regions and in the theta band over the frontal and posterior regions (uncorrected results). Higher weighted symbolic mutual information (wSMI) connectivity was found between left and right parietal regions, and higher fronto-parietal weighted phase lag index (wPLI) connectivity was found, both in the alpha band (uncorrected results). At the group level, no significant treatment effect was observed. Three patients showed behavioral improvement after the active session and one patient improved after the sham. Conclusion. We provide preliminary indications that neurophysiological changes can be observed after a single session of tDCS in patients with prolonged DOC, although they are not necessarily paralleled with significant behavioral improvements.

9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 4549-4553, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946877

RESUMO

Graph signal processing (GSP) is a novel approach to analyse multi-dimensional neuroimaging data, constraining functional measures by structural characteristics in a single framework (i.e. graph signals). In this approach, functional time series are assigned to the vertices of the underlying weighted graph and GSP analysis is performed in each time point of the signal. Here we used GSP to study local brain connectivity changes in patients with disorders of consciousness based on resting state high density electroencephalography (hdEEG) recordings. Total variation of the graph signals is a measure of signal smoothness over the underlying graph. In this study, we constructed the underlying graph based on the geometrical distances between each electrode pairs in such a way that local smoothness of the signal can be studied. Total variation analysis in α-band showed that in the pathological states of altered consciousness, local short range communication of brain regions in this frequency band is stronger than in healthy states which shows that information is segregated in local regions in patients with disorders of consciousness.


Assuntos
Transtornos da Consciência , Eletroencefalografia , Rede Nervosa , Encéfalo/fisiopatologia , Mapeamento Encefálico , Estado de Consciência , Transtornos da Consciência/diagnóstico , Transtornos da Consciência/fisiopatologia , Humanos
10.
Neuroimage Clin ; 23: 101841, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31063944

RESUMO

Increasing evidence links disorders of consciousness (DOC) with disruptions in functional connectivity between distant brain areas. However, to which extent the balance of brain network segregation and integration is modified in DOC patients remains unclear. Using high-density electroencephalography (EEG), the objective of our study was to characterize the local and global topological changes of DOC patients' functional brain networks. Resting state high-density-EEG data were collected and analyzed from 82 participants: 61 DOC patients recovering from coma with various levels of consciousness (EMCS (n = 6), MCS+ (n = 29), MCS- (n = 17) and UWS (n = 9)), and 21 healthy subjects (i.e., controls). Functional brain networks in five different EEG frequency bands and the broadband signal were estimated using an EEG connectivity approach at the source level. Graph theory-based analyses were used to evaluate their relationship with decreasing levels of consciousness as well as group differences between healthy volunteers and DOC patient groups. Results showed that networks in DOC patients are characterized by impaired global information processing (network integration) and increased local information processing (network segregation) as compared to controls. The large-scale functional brain networks had integration decreasing with lower level of consciousness.


Assuntos
Encéfalo/fisiopatologia , Transtornos da Consciência/diagnóstico , Transtornos da Consciência/fisiopatologia , Eletroencefalografia/métodos , Rede Nervosa/fisiopatologia , Adulto , Eletroencefalografia/tendências , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa