Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 146: 349-362, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31786507

RESUMO

Young wheat seedlings are desiccation tolerant and have the capacity to withstand long dehydration period. In this study, we characterized the proteome and metabolome of wheat seedlings during desiccation and after recovery. Functional classification of differentially identified proteins revealed dynamic changes in the number and abundance of proteins observed during stress and recovery. Desiccation resulted in a decline in the abundance of proteins associated with photosynthesis and carbohydrate reserves, along with an increase in the presence of proteins associated with stress and defense response, such as peroxiredoxins and antioxidant enzymes. Following recovery, the abundance of stress-responsive proteins returned either partially or completely to their baseline level, confirming their importance to the seedling's desiccation response. Furthermore, proteins involved in carbohydrate metabolism, as well as fructose-bisphosphate aldolase and fructokinase-2 and phosphorylated metabolites as the substrate or the end-product, showed the inverse pattern during desiccation and after re-watering. This may reflect the fact that plants maintained energy supply during stress to protect seedlings from further damage, and for use in subsequent recovery after rewatering period. This study provides novel insights into the molecular mechanisms underlying the desiccation tolerance of wheat seedlings, and paves the way for more detailed molecular analysis of this remarkable phenomenon.


Assuntos
Triticum , Dessecação , Proteínas de Plantas , Proteoma , Proteômica , Plântula
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa