Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 876: 162743, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36907414

RESUMO

The Big River in southeast Missouri drains the largest historical lead mining area in the United States. Ongoing releases of metal contaminated sediments into this river are well documented and are suspected of suppressing freshwater mussel populations. We characterized the spatial extent of metal contaminated sediments and evaluated its relationship with mussel populations in the Big River. Mussels and sediments were collected at 34 sites with potential metal effects and 3 reference sites. Analysis of sediment samples showed that lead (Pb) and zinc (Zn) concentrations were 1.5 to 65 times greater than background concentrations in the reach extending 168 km downstream from Pb mining releases. Mussel abundance decreased acutely downstream from these releases where sediment Pb concentrations were highest and increased gradually as Pb sediment concentrations attenuated downstream. We compared current species richness with historical survey data from three reference rivers with similar physical habitat characteristics and human effects, but without Pb-contaminated sediment. Big River species richness was on average about one-half that expected based on reference stream populations and was 70-75 % lower in reaches with high median Pb concentrations. Sediment Zn and cadmium, and particularly Pb, had significant negative correlations with species richness and abundance. The association of sediment Pb concentrations with mussel community metrics in otherwise high-quality habitat indicates that Pb toxicity is likely responsible for depressed mussel populations observed within the Big River. We used concentration-response regressions of mussel density verses sediment Pb to determine that the Big River mussel community is adversely affected when sediment Pb concentrations are above 166 ppm, the concentration associated with 50 % decreases in mussel density. Based on this assessment of metals concentrations sediment and mussel fauna, our findings indicate that sediment in approximately 140 km of the Big River with suitable habitat has a toxic effect to mussels.


Assuntos
Bivalves , Metais Pesados , Poluentes Químicos da Água , Animais , Humanos , Missouri , Chumbo/análise , Monitoramento Ambiental , Sedimentos Geológicos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Zinco/análise , Água Doce , Metais Pesados/análise
2.
Integr Comp Biol ; 58(1): 140-149, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29697777

RESUMO

Today's conservation challenges are complex. Solving these challenges often requires scientific collaborations that extend beyond the scope, expertise, and capacity of any single agency, organization, or institution. Conservation efforts can benefit from interdisciplinary collaboration, scientific and technological innovations, and the leveraging of capacity and resources among partners. Here we explore a series of case studies demonstrating how collaborative scientific partnerships are furthering the mission of the US Fish and Wildlife Service (USFWS), including: (1) contaminants of emerging concern in the Great Lakes Basin, (2) Poweshiek skipperling conservation, (3) using technology to improve population survey methods for bats and monarch butterfly, and (4) Big River restoration in the Southeast Missouri lead mining district. These case studies illustrate how strategic and effective scientific collaboration is a multi-stage process that requires investment of time and resources by all participants. Early coordination and communication is crucial to aligning planned work with scientific and decision-making needs. Collaborations between USFWS and external scientists can be mutually beneficial by supporting the agency mission while also providing an avenue for innovative research to be directly applied in conservation decisions and management actions.


Assuntos
Participação da Comunidade/métodos , Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Animais , Borboletas/fisiologia , Quirópteros/fisiologia , Lagos/análise , Densidade Demográfica , Pesquisa , Rios , Estados Unidos , Poluição Química da Água/prevenção & controle
3.
Environ Toxicol Chem ; 35(9): 2311-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26876015

RESUMO

Hazards of soil-borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, the authors measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from 5 Pb-contaminated Superfund sites had relative bioavailabilities from 33% to 63%, with a mean of approximately 50%. Treatment of 2 of the soils with phosphorus (P) significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in 6 in vitro tests and regressed on bioavailability: the relative bioavailability leaching procedure at pH 1.5, the same test conducted at pH 2.5, the Ohio State University in vitro gastrointestinal method, the urban soil bioaccessible lead test, the modified physiologically based extraction test, and the waterfowl physiologically based extraction test. All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the relative bioavailability leaching procedure at pH 2.5 and Ohio State University in vitro gastrointestinal tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite, and tertiary Pb phosphate) and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb, and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb. Environ Toxicol Chem 2016;35:2311-2319. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.


Assuntos
Coturnix/sangue , Monitoramento Ambiental/métodos , Chumbo/sangue , Poluentes do Solo/sangue , Solo/química , Animais , Disponibilidade Biológica , Fósforo/química , Estados Unidos , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa