Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877603

RESUMO

Inspired by the first shell mechanism proposed for the tungstoenzyme acetylene hydratase, the electrophilic reactivity of tungsten-acetylene complexes [W(CO)(C2H2)(6-MePyS)2] (1) and [WO(C2H2)(6-MePyS)2] (2) was investigated. The biological nucleophile water/hydroxide and tert-butyl isocyanide were employed. Our findings consistently show that, regardless of the nucleophile used, both tungsten centers W(II) and W(IV), respectively, are the preferred targets over the coordinated acetylene. Treatment of 2 with aqueous NaOH led to protonation of coordinated acetylene to ethylene, pointing toward the Brønsted basic character of the coordinated alkyne instead of the anticipated electrophilic behavior. In cases involving isocyanides as nucleophiles, the attack on the W(II) center of 1 took place first, whereas the W(IV) complex 2 remained unchanged. These experiments indicate that the direct nucleophilic attack of W-coordinated acetylene by water, as some computational studies of acetylene hydratase propose, is unlikely to occur.

2.
Inorg Chem ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38898818

RESUMO

Bioinspired tungsten acetylene complexes containing pyridine-2-selenolato (PySe) or 6-methyl-pyridine-2-selenolato (6-MePySe) ligands were synthesized. 77Se NMR spectroscopy allowed for an assessment of the resonance structures in the pyridine-2-selenolato ligands and the rationalization of chemoselectivity observed in regard to 1,2 migratory insertion of HC≡CH. [W(CO)(C2H2)(CHCH-PySe)(PySe)] is formed exclusively via insertion of HC≡CH into the W-N bond, while the use of bulkier 6-MePySe allows for the isolation of [W(CO)(C2H2)(6-MePySe)2], which only partially reacts with excess HC≡CH to give [W(CO)(C2H2)(CHCH-6-MePySe)(6-MePySe)]. Oxidation of [W(CO)(C2H2)(6-MePySe)2] with pyridine-N-oxide gave the tungsten(IV) complex [WO(C2H2)(6-MePySe)2]. Complexes [W(CO)(C2H2)(6-MePySe)2] and [WO(C2H2)(6-MePySe)2] react with trimethyl phosphine to carbyne complex [W(CO)(CCH2PMe3)(PMe3)2(6-MePySe)]Cl and alkylidene complex [WO(CHCHPMe3)(PMe3)2(6-MePySe)]Cl, respectively. The addition of substituted alkynes to [W(CO)3(PySe)2] via thermal decarbonylation gave complexes [W(CO)(MeC≡CMe)(PySe)2] and [W(CO)(HC≡Ct-Bu)(PySe)2], respectively. The here presented complexes are relevant for the modeling of the active site of acetylene hydratase from Pelobacter acetylenicus, in which a tungsten atom is enclosed in a sulfur-rich coordination sphere. A recently published theoretical study concluded that the exchange of sulfur for selenium would increase the activity of the enzyme. Our findings contrast this claim as comparative analysis concludes negligible structural and electronic differences between the selenium-based and previously published sulfur-based complexes.

3.
Inorg Chem ; 62(14): 5669-5676, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36989414

RESUMO

An increasing number of discovered tungstoenzymes raises interest in the biomimetic chemistry of tungsten complexes in oxidation states +IV, +V, and +VI. Bioinspired (sulfur-rich) tungsten(VI) dioxido complexes are relatively prevalent in literature. Still, their energetically demanding reduction directly correlates with a small number of known tungsten(IV) oxido complexes, whose chemistry is not well explored. In this paper, a reduction of the [WO2(6-MePyS)2] (6-MePyS = 6-methylpyridine-2-thiolate) complex with PMe3 to a phosphine-stabilized tungsten(IV) oxido complex [WO(6-MePyS)2(PMe3)2] is described. This tungsten(IV) complex partially releases one PMe3 ligand in solution, creating a vacant coordination site capable of activating dioxygen to form [WO2(6-MePyS)2] and OPMe3. Therefore, [WO2(6-MePyS)2] can be used as a catalyst for the aerobic oxidation of PMe3, rendering this complex a rare example of a tungsten system utilizing dioxygen in homogeneous catalysis. Additionally, the investigation of the reactivity of the tungsten(IV) oxido complex with acetylene, substrate of a tungstoenzyme acetylene hydratase (AH), revealed the formation of the tungsten(IV) acetylene adduct. Although this adduct was previously reported as an oxidation product of the tungsten(II) acetylene carbonyl complex, here it is obtained via substitution at the sulfur-rich tungsten(IV) center, mimicking the initial step of the first shell mechanism for AH as suggested by computational studies.

4.
Chemistry ; 28(55): e202201867, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35775999

RESUMO

Molybdenum(VI) bis(imido) complexes [Mo(NtBu)2 (LR )2 ] (R=H 1 a; R=CF3 1 b) combined with B(C6 F5 )3 (1 a/B(C6 F5 )3 , 1 b/B(C6 F5 )3 ) exhibit a frustrated Lewis pair (FLP) character that can heterolytically split H-H, Si-H and O-H bonds. Cleavage of H2 and Et3 SiH affords ion pairs [Mo(NtBu)(NHtBu)(LR )2 ][HB(C6 F5 )3 ] (R=H 2 a; R=CF3 2 b) composed of a Mo(VI) amido imido cation and a hydridoborate anion, while reaction with H2 O leads to [Mo(NtBu)(NHtBu)(LR )2 ][(HO)B(C6 F5 )3 ] (R=H 3 a; R=CF3 3 b). Ion pairs 2 a and 2 b are catalysts for the hydrosilylation of aldehydes with triethylsilane, with 2 b being more active than 2 a. Mechanistic elucidation revealed insertion of the aldehyde into the B-H bond of [HB(C6 F5 )3 ]- . We were able to isolate and fully characterize, including by single-crystal X-ray diffraction analysis, the inserted products Mo(NtBu)(NHtBu)(LR )2 ][{PhCH2 O}B(C6 F5 )3 ] (R=H 4 a; R=CF3 4 b). Catalysis occurs at [HB(C6 F5 )3 ]- while [Mo(NtBu)(NHtBu)(LR )2 ]+ (R=H or CF3 ) act as the cationic counterions. However, the striking difference in reactivity gives ample evidence that molybdenum cations behave as weakly coordinating cations (WCC).

5.
Inorg Chem ; 61(31): 12415-12424, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35894844

RESUMO

Upon replacement of molybdenum by tungsten in DMSO reductase isolated from the Rhodobacteraceae family, the derived enzyme catalyzes DMSO reduction faster. To better understand this behavior, we synthesized two tungsten(VI) dioxido complexes [WVIO2L2] with pyridine- (PyS) and pyrimidine-2-thiolate (PymS) ligands, isostructural to analogous molybdenum complexes we reported recently. Higher oxygen atom transfer (OAT) catalytic activity was observed with [WO2(PyS)2] compared to the Mo species, independent of whether PMe3 or PPh3 was used as the oxygen acceptor. [WVIO2L2] complexes undergo reduction with an excess of PMe3, yielding the tungsten(IV) oxido species [WOL2(PMe3)2], while with PPh3, no reactions are observed. Although OAT reactions from DMSO to phosphines are known for tungsten complexes, [WOL2(PMe3)2] are the first fully characterized phosphine-stabilized intermediates. By following the reaction of these reduced species with excess DMSO via UV-vis spectroscopy, we observed that tungsten compounds directly react to WVIO2 complexes while the Mo analogues first form µ-oxo Mo(V) dimers [Mo2O3L4]. Density functional theory calculations confirm that the oxygen atom abstraction from WVIO2 is an endergonic process contrasting the respective reaction with molybdenum. Here, we suggest that depending on the sacrificial oxygen acceptor, the tungsten complex may participate in catalysis either via a redox reaction or as an electrophile.


Assuntos
Compostos Organometálicos , Tungstênio , Biomimética , Dimetil Sulfóxido , Molibdênio/química , Compostos Organometálicos/química , Oxigênio/química , Tungstênio/química
6.
Inorg Chem ; 60(12): 8414-8418, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33852290

RESUMO

Inspired by the proposed inner-sphere mechanism of the tungstoenzyme acetylene hydratase, we have designed tungsten acetylene complexes and investigated their reactivity. Here, we report the first intermolecular nucleophilic attack on a tungsten-bound acetylene (C2H2) in bioinspired complexes employing 6-methylpyridine-2-thiolate ligands. By using PMe3 as a nucleophile, we isolated cationic carbyne and alkenyl complexes.


Assuntos
Acetileno/química , Alcenos/síntese química , Alcinos/síntese química , Complexos de Coordenação/química , Tungstênio/química , Alcenos/química , Alcenos/isolamento & purificação , Alcinos/química , Alcinos/isolamento & purificação , Cátions/síntese química , Cátions/química , Cátions/isolamento & purificação , Ligantes , Modelos Moleculares , Estrutura Molecular
7.
Angew Chem Int Ed Engl ; 60(24): 13401-13404, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33773004

RESUMO

Reaction of [NiCl2 (PnH)4 ] (1) (PnH=6-tert-butyl-pyridazine-3-thione) with NiCl2 affords the binuclear paddlewheel (PW) complex [Ni2 (Pn)4 ] (2). Diamagnetic complex 2 is the first example of a PW complex capable of reversibly binding and releasing NH3 . The NH3 ligand in [Ni2 (Pn)4 (NH3 )] (2⋅NH3 ) enforces major spectroscopic and magnetic susceptibility changes, thus displaying vapochromic properties (λmax (2)=532 nm, λmax (2⋅NH3 )=518 nm) and magnetochemical switching (2: S=0; 2⋅NH3 : S=1). Upon repeated adsorption/desorption cycles of NH3 the PW core remains intact. Compound 2 can be embedded into thin polyurethane films (2P ) under retention of its sensing abilities. Therefore, 2 qualifies as reversible optical probe for ammonia. The magnetochemical switching of 2 and 2⋅NH3 was studied in detail by SQUID measurements showing that in 2⋅NH3 , solely the Ni atom coordinated the NH3 molecule is responsible for the paramagnetic behavior.

8.
Chemistry ; 26(54): 12431-12444, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32640122

RESUMO

A series of WIV alkyne complexes with the sulfur-rich ligand hydridotris(2-mercapto-1-methylimidazolyl) borate) (TmMe ) are presented as bio-inspired models to elucidate the mechanism of the tungstoenzyme acetylene hydratase (AH). The mono- and/or bis-alkyne precursors were reacted with NaTmMe and the resulting complexes [W(CO)(C2 R2 )(TmMe )Br] (R=H 1, Me 2) oxidized to the target [WE(C2 R2 )(TmMe )Br] (E=O, R=H 4, Me 5; E=S, R=H 6, Me 7) using pyridine-N-oxide and methylthiirane. Halide abstraction with TlOTf in MeCN gave the cationic complexes [WE(C2 R2 )(MeCN)(TmMe )](OTf) (E=CO, R=H 10, Me 11; E=O, R=H 12, Me 13; E=S, R=H 14, Me 15). Without MeCN, dinuclear complexes [W2 O(µ-O)(C2 Me2 )2 (TmMe )2 ](OTf)2 (8) and [W2 (µ-S)2 (C2 Me2 )(TmMe )2 ](OTf)2 (9) could be isolated showing distinct differences between the oxido and sulfido system with the latter exhibiting only one molecule of C2 Me2 . This provides evidence that a fine balance of the softness at W is important for acetylene coordination. Upon dissolving complex 8 in acetonitrile complex 13 is reconstituted in contrast to 9. All complexes exhibit the desired stability toward water and the observed effective coordination of the scorpionate ligand avoids decomposition to disulfide, an often-occurring reaction in sulfur ligand chemistry. Hence, the data presented here point toward a mechanism with a direct coordination of acetylene in the active site and provide the basis for further model chemistry for acetylene hydratase.


Assuntos
Boratos , Complexos de Coordenação/química , Hidroliases/química , Tungstênio , Ligantes
9.
Adv Synth Catal ; 362(15): 3170-3182, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32982624

RESUMO

Three molybdenum(VI) dioxido complexes [MoO2(L)2] bearing Schiff base ligands were reacted with B(C6F5)3 to afford the corresponding adducts [MoO{OB(C6F5)3}(L)2], which were fully characterized. They exhibit Frustrated Lewis-Pairs reactivity when reacting with silanes. Especially, the [MoO{OB(C6F5)3}(L)2] complex with L=2,4-dimethyl-6-((phenylimino)methyl)phenol proved to be active as catalyst for the hydroalkylation of aryl alkenes with organohalides and for the Atom-Transfer Radical Addition (ATRA) of organohalides to aliphatic alkenes. A series of gem-dichloride and gem-dibromide compounds with potential for further derivatization were synthesized from simple alkenes and organohalides, like chloroform or bromoform, using low catalyst loading.

10.
Inorg Chem ; 59(19): 14577-14593, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32951421

RESUMO

Four dioxidomolybdenum(VI) complexes of the general structure [MoO2L2] employing the S,N-bidentate ligands pyrimidine-2-thiolate (PymS, 1), pyridine-2-thiolate (PyS, 2), 4-methylpyridine-2-thiolate (4-MePyS, 3) and 6-methylpyridine-2-thiolate (6-MePyS, 4) were synthesized and characterized by spectroscopic means and single-crystal X-ray diffraction analysis (2-4). Complexes 1-4 were reacted with PPh3 and PMe3, respectively, to investigate their oxygen atom transfer (OAT) reactivity and catalytic applicability. Reduction with PPh3 leads to symmetric molybdenum(V) dimers of the general structure [Mo2O3L4] (6-9). Kinetic studies showed that the OAT from [MoO2L2] to PPh3 is 5 times faster for the PymS system than for the PyS and 4-MePyS systems. The reaction of complexes 1-3 with PMe3 gives stable molybdenum(IV) complexes of the structure [MoOL2(PMe3)2] (10-12), while reduction of [MoO2(6-MePyS)2] (4) yields [MoO(6-MePyS)2(PMe3)] (13) with only one PMe3 coordinated to the metal center. The activity of complexes 1-4 in catalytic OAT reactions involving Me2SO and Ph2SO as oxygen donors and PPh3 as an oxygen acceptor has been investigated to assess the influence of the varied ligand frameworks on the OAT reaction rates. It was found that [MoO2(PymS)2] (1) and [MoO2(6-MePyS)2] (4) are similarly efficient catalysts, while complexes 2 and 3 are only moderately active. In the catalytic oxidation of PMe3 with Me2SO, complex 4 is the only efficient catalyst. Complexes 1-4 were also found to catalytically reduce NO3- with PPh3, although their reactivity is inhibited by further reduced species such as NO, as exemplified by the formation of the nitrosyl complex [Mo(NO)(PymS)3] (14), which was identified by single-crystal X-ray diffraction analysis. Computed ΔG⧧ values for the very first step of the OAT were found to be lower for complexes 1 and 4 than for 2 and 3, explaining the difference in catalytic reactivity between the two pairs and revealing the requirement for an electron-deficient ligand system.

11.
Chemistry ; 25(24): 6064-6076, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-30707470

RESUMO

Lewis acid-base pair chemistry has been placed on a new level with the discovery that adduct formation between an electron donor (Lewis base) and acceptor (Lewis acid) can be inhibited by the introduction of steric demand, thus preserving the reactivity of both Lewis centers, resulting in highly unusual chemistry. Some of these highly versatile frustrated Lewis pairs (FLP) are capable of splitting a variety of small molecules, such as dihydrogen, in a heterolytic and even catalytic manner. This is in sharp contrast to classical reactions where the inert substrate must be activated by a metal-based catalyst. Very recently, research has emerged combining the two concepts, namely the formation of FLPs in which a metal compound represents the Lewis base, allowing for novel chemistry by using the heterolytic splitting power of both together with the redox reactivity of the metal. Such reactivity is not restricted to the metal center itself being a Lewis acid or base, also ancillary ligands can be used as part of the Lewis pair, still with the benefit of the redox-active metal center nearby. This Minireview is designed to highlight the novel reactions arising from the combination of metal oxido transition-metal or rare-earth-metal compounds with the Lewis acid B(C6 F5 )3 . It covers a wide area of chemistry including small molecule activation, hydrogenation and hydrosilylation catalysis, and olefin metathesis, substantiating the broad influence of the novel concept. Future goals of this young and exciting area are briefly discussed.

12.
Chemistry ; 25(63): 14267-14272, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31603595

RESUMO

Bioinspired complexes employing the ligands 6-tert-butylpyridazine-3-thione (SPn) and pyridine-2-thione (SPy) were synthesized and fully characterized to mimic the tungstoenzyme acetylene hydratase (AH). The complexes [W(CO)(C2 H2 )(CHCH-SPy)(SPy)] (4) and [W(CO)(C2 H2 )(CHCH-SPn)(SPn)] (5) were formed by intramolecular nucleophilic attack of the nitrogen donors of the ligand on the coordinated C2 H2 molecule. Labelling experiments using C2 D2 with the SPy system revealed the insertion reaction proceeding via a bis-acetylene intermediate. The starting complex [W(CO)(C2 H2 )(SPy)2 ] (6) for these studies was accessed by the new acetylene precursor mixture [W(CO)(C2 H2 )n (MeCN)3-n Br2 ] (n=1 and 2; 7). All complexes represent rare examples in the field of W-C2 H2 chemistry with 4 and 5 being the first of their kind. In the ongoing debate on the enzymatic mechanism, the findings support activation of acetylene by the tungsten center.


Assuntos
Materiais Biomiméticos/química , Complexos de Coordenação/química , Tungstênio/química , Acetileno/química , Acetileno/metabolismo , Materiais Biomiméticos/metabolismo , Complexos de Coordenação/síntese química , Medição da Troca de Deutério , Hidroliases/química , Hidroliases/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estereoisomerismo
13.
Chemistry ; 25(15): 3893-3902, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30773712

RESUMO

The synthesis and structural determination of four tungsten alkyne complexes coordinated by the bio-inspired S,N-donor ligand 2-(4',4'-dimethyloxazoline-2'-yl)thiophenolate (S-Phoz) is presented. A previously established protocol that involved the reaction of the respective alkyne with the bis-carbonyl precursor [W(CO)2 (S-Phoz)2 ] was used for the complexes [W(CO)(C2 R2 )(S-Phoz)2 ] (R=H, 1 a; Me, 1 b; Ph, 1 c). Oxidation with pyridine-N-oxide gave the corresponding W-oxo species [WO(C2 R2 )(S-Phoz)2 ] (R=H, 2 a; Me, 2 b; Ph, 2 c). All W-oxo-alkyne complexes (2 a, b, c) were found to be capable of alkyne release upon light irradiation to afford five-coordinate [WO(S-Phoz)2 ] (3). The photoinduced release of the alkyne ligand was studied in detail by in situ 1 H NMR measurements, which revealed correlation of the photodissociation rate constant (2 b>2 a>2 c) with the elongation of the alkyne C≡C bond in the molecular structures. Oxidation of [WO(S-Phoz)2 ] (3) with pyridine-N-oxide yielded [WO2 (S-Phoz)2 ] (4), which shows highly fluxional behavior in solution. Variable-temperature 1 H NMR spectroscopy revealed three isomeric forms with respect to the ligand arrangement versus each other. Furthermore, compound 4 rearranges to tetranuclear oxo compound [W4 O4 (µ-O)6 (S-Phoz)4 ] (5) and dinuclear [{WO(µ-O)(S-Phoz)}2 ] (6) over time. The latter two were identified by single-crystal X-ray diffraction analyses.

14.
Inorg Chem ; 58(12): 8179-8187, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31141348

RESUMO

The synthesis and characterization of a series of novel tungsten complexes employing the bioinspired, sulfur-rich scorpionate ligand [PhTt] (phenyltris((methylthio)methyl)borate) are reported. Starting from the previously published tungsten precursor [WBr2(CO)3(NCMe)2], a salt metathesis reaction with 1 equiv of Cs[PhTt] led to the desired complex [WBr(CO)3(PhTt)] (1), making it the first tungsten complex employing a poly(thioether)borate ligand. Surprisingly, the reaction of [WBr2(CO)3(NCMe)2] with an excess of the ligand gave complex [W(CO)2(η2-CH2SMe)(PhTt)] (2) with a bidentate (methylthio)methanide ligand as the major product. Thereby, phenyldi((methylthio)methyl)borane is formed, which was isolated and characterized by NMR spectroscopy. The bromido ligand in [WBr(CO)3(PhTt)] was further substituted by the S,N-bidentate methimazole in order to make the first coordination sphere more sulfur-rich forming [W(CO)2(mt)(PhTt)] (3). Alkyne tungsten complexes employing the sulfur-rich scorpionate ligand were accessible by reaction of [WBr2(CO)(C2R2)2(NCMe)] (R = Me, Ph) with Cs[PhTt] forming [WBr(CO)(C2R2)2(PhTt- S, S')] (R = Me 4, Ph 5), with the potentially tridentate ligand coordinated only via two sulfur atoms. In the case of 4, the higher flexibility of the bidentate coordination leads to the formation of two isomers with respect to the six-membered ring formed by the tungsten center and the two coordinated sulfur atoms of the ligand. All complexes 1-5 were characterized by single-crystal X-ray diffraction analysis.

15.
Molecules ; 24(9)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083419

RESUMO

Two novel iminophenolate ligands with amidopropyl side chains (HL2 and HL3) on the imine functionality have been synthesized in order to prepare dioxidomolybdenum(VI) complexes of the general structure [MoO2L2] featuring pendant internal hydrogen bond donors. For reasons of comparison, a previously published complex featuring n-butyl side chains (L1) was included in the investigation. Three complexes (1-3) obtained using these ligands (HL1-HL3) were able to activate dioxygen in an in situ approach: The intermediate molybdenum(IV) species [MoO(PMe3)L2] is first generated by treatment with an excess of PMe3. Subsequent reaction with dioxygen leads to oxido peroxido complexes of the structure [MoO(O2)L2]. For the complex employing the ligand with the n-butyl side chain, the isolation of the oxidomolybdenum(IV) phosphino complex [MoO(PMe3)(L1)2] (4) was successful, whereas the respective Mo(IV) species employing the ligands with the amidopropyl side chains were found to be not stable enough to be isolated. The three oxido peroxido complexes of the structure [MoO(O2)L2] (9-11) were systematically compared to assess the influence of internal hydrogen bonds on the geometry as well as the catalytic activity in aerobic oxidation. All complexes were characterized by spectroscopic means. Furthermore, molecular structures were determined by single-crystal X-ray diffraction analyses of HL3, 1-3, 9-11 together with three polynuclear products {[MoO(L2)2]2(µ-O)} (7), {[MoO(L2)]4(µ-O)6} (8) and [C9H13N2O]4[Mo8O26]·6OPMe3 (12) which were obtained during the synthesis of reduced complexes of the type [MoO(PMe3)L2] (4-6).


Assuntos
Amidas/química , Molibdênio/química , Oxigênio/química , Fenóis/química
16.
Chemistry ; 24(28): 7149-7160, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29521459

RESUMO

The reaction of a molybdenum(VI) oxido imido complex with the strong Lewis acid B(C6 F5 )3 gave access to the Lewis adduct [Mo{OB(C6 F5 )3 }(NtBu)L2 ] featuring reversible B-O bonding in solution. The resulting frustrated Lewis pair (FLP)-like reactivity is reflected by the compound's ability to heterolytically cleave Si-H bonds, leading to a clean formation of the novel cationic MoVI species 3 a (R=Et) and 3 b (R=Ph) of the general formula [Mo(OSiR3 )(NtBu)L2 ][HB(C6 F5 )3 ]. These compounds possess properties highly unusual for molybdenum d0 species such as an intensive, charge-transfer-based color as well as a reversible redox couple at very low potentials, both dependent on the silane used. Single-crystal X-ray diffraction analyses of 2 and 4 b, a derivative of 3 b featuring the [FB(C6 F5 )3 ]- anion, picture the stepwise elongation of the Mo=O bond, leading to a large increase in the electrophilicity of the metal center. The reaction of 3 a and 3 b with benzaldehyde allowed for the regeneration of compound 2 by hydrosilylation of the benzaldehyde. NMR spectroscopy suggested an unusual mechanism for the transformation, involving a substrate insertion in the B-H bond of the borohydride anion.

17.
Inorg Chem ; 57(12): 6921-6931, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29877076

RESUMO

Palladium and platinum boratrane complexes of the type [M{B(PnMe, tBu)3}(PPh3)] (M = Pd 1, Pt 2b) have been prepared via the reaction of the soft scorpionate ligand potassium tris(4-methyl-6- tert-butyl-3-thiopyridazinyl)borate KTnMe, tBu with bis(triphenylphosphine)metal(II) dichloride. While reaction with the Pd precursor allowed direct isolation of a symmetric boratrane complex, the Pt analogue led to the hydrido compound [Pt{B(PnMe, tBu)3}(PPh3)H]Cl (2a), which after reaction with a base gave 2b. Subsequent oxidation with Br2 and I2, respectively, led to the dihalide compounds of the molecular formula [M{B(PnMe, tBu)3}X2] (3a,b-4a,b). Halide abstraction with Ag(SbF6) further gave interesting cationic compounds of either dimeric [Pd{B(PnMe, tBu)3}X]2(SbF6)2 (5a,b) or monomeric [Pd{B(PnMe, tBu)3}(NCMe)2](SbF6) (6) nature. All compounds were spectroscopically and X-ray crystallographically characterized revealing strong metal to boron interactions. DFT calculations of 1, 2a, and 2b confirm the strong M-B interaction and a high positive charge on the metal centers.

18.
Angew Chem Int Ed Engl ; 57(23): 6906-6909, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29660799

RESUMO

The terminal zinc hydride complex [Tntm]ZnH (2; Tntm=tris(6-tert-butyl-3-thiopyridazinyl)methanide) is an efficient hydrosilylation catalyst of CO2 at room temperature without the need of Lewis acidic additives. The inherent electrophilicity of the system leads to selective formation of the monosilylated product (MeO)3 SiO2 CH (at room temperature with a TOF of 22.2 h-1 and at 45 °C with a TOF of 66.7 h-1 ). In absence of silanes, the intermediate formate complex [Tntm]Zn(O2 CH) (3) is quantitatively formed within 5 min. All complexes were fully characterized by 1 H and 13 C NMR spectroscopy and single-crystal X-ray diffraction analyses. Density functional theory (DFT) calculations reveal a high positive charge on zinc and the increased preference of the ligand to adopt a κ3 -coordination mode.

19.
Inorg Chem ; 56(14): 8159-8165, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28654286

RESUMO

The reaction of iron(II) triflate with 6-tert-butyl-3-thiopyridazine (PnH) and 4-methyl-6-tert-butyl-3-thiopyridazine (MePnH) respectively led to iron bis(diorganotrisulfide) complexes [Fe(RPnS3PnR)2](OTf)2 [R = H (1a) and Me (2a)]. The corresponding perchlorate complexes were prepared by using the iron(II) chloride precursor and the subsequent addition of 2 equiv of NaClO4, giving [Fe(RPnS3PnR)2](ClO4)2 [R = H (1b) and Me (2b)]. The compounds were fully characterized including single-crystal X-ray diffraction analysis. All four compounds exhibit nearly perfect octahedral geometries with an iron center coordinated by four nitrogen atoms from two RPnS3PnR ligands and by two sulfur atoms of the central atom in the S3 unit. The diamagnetic complexes exhibit unusually high redox potentials for the Fe2+/3+ couple at E1/2 = 1.15 V (for 1a and 1b) and 1.08 V (for 2a and 2b) versus Fc/Fc+, respectively, as determined by cyclic voltammetry. Furthermore, the source of the extra sulfur atom within the S3 unit was elucidated by isolation of C-N-coupled pyridazinylthiopyridazine products.

20.
Inorg Chem ; 56(17): 10147-10150, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28812883

RESUMO

Activation of molecular dioxygen at a molybdenum(IV) imido compound led to the isolation and full characterization of a remarkably stable transition-metal imidoperoxido complex.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa