Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 36(2): 447-470, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37820736

RESUMO

Plant nucleotide-binding leucine-rich repeat (NLRs) immune receptors directly or indirectly recognize pathogen-secreted effector molecules to initiate plant defense. Recognition of multiple pathogens by a single NLR is rare and usually occurs via monitoring for changes to host proteins; few characterized NLRs have been shown to recognize multiple effectors. The barley (Hordeum vulgare) NLR gene Mildew locus a (Mla) has undergone functional diversification, and the proteins encoded by different Mla alleles recognize host-adapted isolates of barley powdery mildew (Blumeria graminis f. sp. hordei [Bgh]). Here, we show that Mla3 also confers resistance to the rice blast fungus Magnaporthe oryzae in a dosage-dependent manner. Using a forward genetic screen, we discovered that the recognized effector from M. oryzae is Pathogenicity toward Weeping Lovegrass 2 (Pwl2), a host range determinant factor that prevents M. oryzae from infecting weeping lovegrass (Eragrostis curvula). Mla3 has therefore convergently evolved the capacity to recognize effectors from diverse pathogens.


Assuntos
Ascomicetos , Eragrostis , Hordeum , Magnaporthe , Virulência/genética , Hordeum/genética , Eragrostis/metabolismo , Plantas/metabolismo , Especificidade de Hospedeiro , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Cell ; 33(6): 1888-1906, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33710295

RESUMO

Sequence assembly of large and repeat-rich plant genomes has been challenging, requiring substantial computational resources and often several complementary sequence assembly and genome mapping approaches. The recent development of fast and accurate long-read sequencing by circular consensus sequencing (CCS) on the PacBio platform may greatly increase the scope of plant pan-genome projects. Here, we compare current long-read sequencing platforms regarding their ability to rapidly generate contiguous sequence assemblies in pan-genome studies of barley (Hordeum vulgare). Most long-read assemblies are clearly superior to the current barley reference sequence based on short-reads. Assemblies derived from accurate long reads excel in most metrics, but the CCS approach was the most cost-effective strategy for assembling tens of barley genomes. A downsampling analysis indicated that 20-fold CCS coverage can yield very good sequence assemblies, while even five-fold CCS data may capture the complete sequence of most genes. We present an updated reference genome assembly for barley with near-complete representation of the repeat-rich intergenic space. Long-read assembly can underpin the construction of accurate and complete sequences of multiple genomes of a species to build pan-genome infrastructures in Triticeae crops and their wild relatives.


Assuntos
Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hordeum/genética , Biologia Computacional/métodos , DNA Intergênico , Genoma de Planta , Anotação de Sequência Molecular , Retroelementos , Análise de Sequência de DNA , Sequências Repetidas Terminais
3.
PLoS Genet ; 16(1): e1008571, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31986137

RESUMO

Long-read sequencing facilitates assembly of complex genomic regions. In plants, loci containing nucleotide-binding, leucine-rich repeat (NLR) disease resistance genes are an important example of such regions. NLR genes constitute one of the largest gene families in plants and are often clustered, evolving via duplication, contraction, and transposition. We recently mapped the Xo1 locus for resistance to bacterial blight and bacterial leaf streak, found in the American heirloom rice variety Carolina Gold Select, to a region that in the Nipponbare reference genome is NLR gene-rich. Here, toward identification of the Xo1 gene, we combined Nanopore and Illumina reads and generated a high-quality Carolina Gold Select genome assembly. We identified 529 complete or partial NLR genes and discovered, relative to Nipponbare, an expansion of NLR genes at the Xo1 locus. One of these has high sequence similarity to the cloned, functionally similar Xa1 gene. Both harbor an integrated zfBED domain, and the repeats within each protein are nearly perfect. Across diverse Oryzeae, we identified two sub-clades of NLR genes with these features, varying in the presence of the zfBED domain and the number of repeats. The Carolina Gold Select genome assembly also uncovered at the Xo1 locus a rice blast resistance gene and a gene encoding a polyphenol oxidase (PPO). PPO activity has been used as a marker for blast resistance at the locus in some varieties; however, the Carolina Gold Select sequence revealed a loss-of-function mutation in the PPO gene that breaks this association. Our results demonstrate that whole genome sequencing combining Nanopore and Illumina reads effectively resolves NLR gene loci. Our identification of an Xo1 candidate is an important step toward mechanistic characterization, including the role(s) of the zfBED domain. Finally, the Carolina Gold Select genome assembly will facilitate identification of other useful traits in this historically important variety.


Assuntos
Resistência à Doença , Proteínas NLR/genética , Oryza/genética , Proteínas de Plantas/genética , Anotação de Sequência Molecular , Proteínas NLR/química , Proteínas NLR/metabolismo , Sequenciamento por Nanoporos/métodos , Oryza/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sequenciamento Completo do Genoma/métodos , Dedos de Zinco
4.
PLoS Genet ; 14(9): e1007637, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30265666

RESUMO

Multilayered defense responses ensure that plants are hosts to only a few adapted pathogens in the environment. The host range of a plant pathogen depends on its ability to fully overcome plant defense barriers, with failure at any single step sufficient to prevent life cycle completion of the pathogen. Puccinia striiformis, the causal agent of stripe rust (=yellow rust), is an agronomically important obligate biotrophic fungal pathogen of wheat and barley. It is generally unable to complete its life cycle on the non-adapted wild grass species Brachypodium distachyon, but natural variation exists for the degree of hyphal colonization by Puccinia striiformis. Using three B. distachyon mapping populations, we identified genetic loci conferring colonization resistance to wheat-adapted and barley-adapted isolates of P. striiformis. We observed a genetic architecture composed of two major effect QTLs (Yrr1 and Yrr3) restricting the colonization of P. striiformis. Isolate specificity was observed for Yrr1, whereas Yrr3 was effective against all tested P. striiformis isolates. Plant immune receptors of the nucleotide binding, leucine-rich repeat (NB-LRR) encoding gene family are present at the Yrr3 locus, whereas genes of this family were not identified at the Yrr1 locus. While it has been proposed that resistance to adapted and non-adapted pathogens are inherently different, the observation of (1) a simple genetic architecture of colonization resistance, (2) isolate specificity of major and minor effect QTLs, and (3) NB-LRR encoding genes at the Yrr3 locus suggest that factors associated with resistance to adapted pathogens are also critical for non-adapted pathogens.


Assuntos
Basidiomycota/patogenicidade , Brachypodium/genética , Resistência à Doença/genética , Especificidade de Hospedeiro , Doenças das Plantas/genética , Brachypodium/imunologia , Brachypodium/microbiologia , Mapeamento Cromossômico , Hordeum/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Locos de Características Quantitativas/genética , Triticum/microbiologia
5.
PLoS Genet ; 14(9): e1007636, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30265668

RESUMO

Phytopathogens have a limited range of host plant species that they can successfully parasitise ie. that they are adapted for. Infection of plants by nonadapted pathogens often results in an active resistance response that is relatively poorly characterised because phenotypic variation in this response often does not exist within a plant species, or is too subtle for genetic dissection. In addition, complex polygenic inheritance often underlies these resistance phenotypes and mutagenesis often does not impact upon this resistance, presumably due to genetic or mechanistic redundancy. Here it is demonstrated that phenotypic differences in the resistance response of Brachypodium distachyon to the nonadapted wheat stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst) are genetically tractable and simply inherited. Two dominant loci were identified on B. distachyon chromosome 4 that each reduce attempted Pst colonisation compared with sib and parent lines without these loci. One locus (Yrr1) is effective against diverse Australian Pst isolates and present in two B. distachyon mapping families as a conserved region that was reduced to 5 candidate genes by fine mapping. A second locus, Yrr2, shows Pst race-specificity and encodes a disease resistance gene family typically associated with host plant resistance. These data indicate that some components of resistance to nonadapted pathogens are genetically tractable in some instances and may mechanistically overlap with host plant resistance to avirulent adapted pathogens.


Assuntos
Basidiomycota/patogenicidade , Brachypodium/genética , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Brachypodium/microbiologia , Mapeamento Cromossômico , DNA de Plantas/genética , Genes de Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Análise de Sequência de DNA , Triticum/microbiologia
6.
Mol Plant Microbe Interact ; 33(11): 1253-1264, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32808862

RESUMO

This article is part of the Top 10 Unanswered Questions in MPMI invited review series.Nonhost resistance is typically considered the ability of a plant species to repel all attempts of a pathogen species to colonize it and reproduce on it. Based on this common definition, nonhost resistance is presumed to be very durable and, thus, of great interest for its potential use in agriculture. Despite considerable research efforts, the molecular basis of this type of plant immunity remains nebulous. We here stress the fact that "nonhost resistance" is a phenomenological rather than a mechanistic concept that comprises more facets than typically considered. We further argue that nonhost resistance essentially relies on the very same genes and pathways as other types of plant immunity, of which some may act as bottlenecks for particular pathogens on a given plant species or under certain conditions. Thus, in our view, the frequently used term "nonhost genes" is misleading and should be avoided. Depending on the plant-pathogen combination, nonhost resistance may involve the recognition of pathogen effectors by host immune sensor proteins, which might give rise to host shifts or host range expansions due to evolutionary-conditioned gains and losses in respective armories. Thus, the extent of nonhost resistance also defines pathogen host ranges. In some instances, immune-related genes can be transferred across plant species to boost defense, resulting in augmented disease resistance. We discuss future routes for deepening our understanding of nonhost resistance and argue that the confusing term "nonhost resistance" should be used more cautiously in the light of a holistic view of plant immunity.


Assuntos
Resistência à Doença , Doenças das Plantas , Imunidade Vegetal , Resistência à Doença/genética , Especificidade de Hospedeiro , Plantas
7.
Mol Plant Microbe Interact ; 33(10): 1189-1195, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32748677

RESUMO

The Xo1 locus in the heirloom rice variety Carolina Gold Select confers resistance to bacterial leaf streak and bacterial blight, caused by Xanthomonas oryzae pv. oryzicola and X. oryzae pv. oryzae, respectively. Resistance is triggered by pathogen-delivered transcription activator-like effectors (TALEs) independent of their ability to activate transcription and is suppressed by truncated variants called truncTALEs, common among Asian strains. By transformation of the susceptible variety Nipponbare, we show that one of 14 nucleotide-binding, leucine-rich repeat (NLR) protein genes at the locus, with a zinc finger BED domain, is the Xo1 gene. Analyses of published transcriptomes revealed that the Xo1-mediated response is more similar to those mediated by two other NLR resistance genes than it is to the response associated with TALE-specific transcriptional activation of the executor resistance gene Xa23 and that a truncTALE dampens or abolishes activation of defense-associated genes by Xo1. In Nicotiana benthamiana leaves, fluorescently tagged Xo1 protein, like TALEs and truncTALEs, localized to the nucleus. And endogenous Xo1 specifically coimmunoprecipitated from rice leaves with a pathogen-delivered, epitope-tagged truncTALE. These observations suggest that suppression of Xo1-function by truncTALEs occurs through direct or indirect physical interaction. They further suggest that effector coimmunoprecipitation may be effective for identifying or characterizing other resistance genes.


Assuntos
Resistência à Doença/genética , Oryza , Doenças das Plantas/genética , Proteínas de Plantas/genética , Xanthomonas/patogenicidade , Clonagem Molecular , Humanos , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia
8.
Plant Physiol ; 173(1): 256-268, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27650449

RESUMO

The domestication of plants is underscored by the selection of agriculturally favorable developmental traits, including flowering time, which resulted in the creation of varieties with altered growth habits. Research into the pathways underlying these growth habits in cereals has highlighted the role of three main flowering regulators: VERNALIZATION1 (VRN1), VRN2, and FLOWERING LOCUS T (FT). Previous reverse genetic studies suggested that the roles of VRN1 and FT are conserved in Brachypodium distachyon yet identified considerable ambiguity surrounding the role of VRN2 To investigate the natural diversity governing flowering time pathways in a nondomesticated grass, the reference B. distachyon accession Bd21 was crossed with the vernalization-dependent accession ABR6. Resequencing of ABR6 allowed the creation of a single-nucleotide polymorphism-based genetic map at the F4 stage of the mapping population. Flowering time was evaluated in F4:5 families in five environmental conditions, and three major loci were found to govern flowering time. Interestingly, two of these loci colocalize with the B. distachyon homologs of the major flowering pathway genes VRN2 and FT, whereas no linkage was observed at VRN1 Characterization of these candidates identified sequence and expression variation between the two parental genotypes, which may explain the contrasting growth habits. However, the identification of additional quantitative trait loci suggests that greater complexity underlies flowering time in this nondomesticated system. Studying the interaction of these regulators in B. distachyon provides insights into the evolutionary context of flowering time regulation in the Poaceae as well as elucidates the way humans have utilized the natural variation present in grasses to create modern temperate cereals.


Assuntos
Brachypodium/genética , Flores/genética , Flores/fisiologia , Variação Genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Ecótipo , Regulação da Expressão Gênica de Plantas , Ligação Genética , Genótipo , Geografia , Fenótipo , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Tempo
9.
Phytopathology ; 108(12): 1443-1454, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29923800

RESUMO

Oat crown rust caused by Puccinia coronata f. sp. avenae is the most destructive foliar disease of cultivated oat. Characterization of genetic factors controlling resistance responses to Puccinia coronata f. sp. avenae in nonhost species could provide new resources for developing disease protection strategies in oat. We examined symptom development and fungal colonization levels of a collection of Brachypodium distachyon and B. hybridum accessions infected with three North American P. coronata f. sp. avenae isolates. Our results demonstrated that colonization phenotypes are dependent on both host and pathogen genotypes, indicating a role for race-specific responses in these interactions. These responses were independent of the accumulation of reactive oxygen species. Expression analysis of several defense-related genes suggested that salicylic acid and ethylene-mediated signaling but not jasmonic acid are components of resistance reaction to P. coronata f. sp. avenae. Our findings provide the basis to conduct a genetic inheritance study to examine whether effector-triggered immunity contributes to nonhost resistance to P. coronata f. sp. avenae in Brachypodium spp.


Assuntos
Avena/microbiologia , Basidiomycota/fisiologia , Brachypodium/genética , Resistência à Doença/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Brachypodium/imunologia , Brachypodium/microbiologia , Loci Gênicos/genética , Genótipo , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Especificidade da Espécie
10.
Theor Appl Genet ; 130(6): 1207-1222, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28275817

RESUMO

KEY MESSAGE: We identified two novel wheat stem rust resistance genes, Sr-1644-1Sh and Sr-1644-5Sh in Aegilops sharonensis that are effective against widely virulent African races of the wheat stem rust pathogen. Stem rust is one of the most important diseases of wheat in the world. When single stem rust resistance (Sr) genes are deployed in wheat, they are often rapidly overcome by the pathogen. To this end, we initiated a search for novel sources of resistance in diverse wheat relatives and identified the wild goatgrass species Aegilops sharonesis (Sharon goatgrass) as a rich reservoir of resistance to wheat stem rust. The objectives of this study were to discover and map novel Sr genes in Ae. sharonensis and to explore the possibility of identifying new Sr genes by genome-wide association study (GWAS). We developed two biparental populations between resistant and susceptible accessions of Ae. sharonensis and performed QTL and linkage analysis. In an F6 recombinant inbred line and an F2 population, two genes were identified that mapped to the short arm of chromosome 1Ssh, designated as Sr-1644-1Sh, and the long arm of chromosome 5Ssh, designated as Sr-1644-5Sh. The gene Sr-1644-1Sh confers a high level of resistance to race TTKSK (a member of the Ug99 race group), while the gene Sr-1644-5Sh conditions strong resistance to TRTTF, another widely virulent race found in Yemen. Additionally, GWAS was conducted on 125 diverse Ae. sharonensis accessions for stem rust resistance. The gene Sr-1644-1Sh was detected by GWAS, while Sr-1644-5Sh was not detected, indicating that the effectiveness of GWAS might be affected by marker density, population structure, low allele frequency and other factors.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Poaceae/genética , Basidiomycota , Mapeamento Cromossômico , Estudos de Associação Genética , Ligação Genética , Modelos Lineares , Desequilíbrio de Ligação , Modelos Genéticos , Fenótipo , Doenças das Plantas/microbiologia , Poaceae/microbiologia , Locos de Características Quantitativas
11.
Plant Cell Rep ; 36(4): 611-620, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28204911

RESUMO

KEY MESSAGE: The genetic substitution of transformation amenability alleles from 'Golden Promise' can facilitate the development of transformation-efficient lines from recalcitrant barley cultivars. Barley (Hordeum vulgare) cv. 'Golden Promise' is one of the most useful and well-studied cultivars for genetic manipulation. In a previous report, we identified several transformation amenability (TFA) loci responsible for Agrobacterium-mediated transformation using the F2 generation of immature embryos, derived from 'Haruna Nijo' × 'Golden Promise,' as explants. In this report, we describe higher density mapping of these TFA regions with additional SNP markers using the same transgenic plants. To demonstrate the robustness of transformability alleles at the TFA loci, we genotyped 202 doubled haploid progeny from the cross 'Golden Promise' × 'Full Pint.' Based on SNP genotype, we selected lines having 'Golden Promise' alleles at TFA loci and used them for transformation. Of the successfully transformed lines, DH120366 came the closest to achieving a level of transformation efficiency comparable to 'Golden Promise.' The results validate that the genetic substitution of TFA alleles from 'Golden Promise' can facilitate the development of transformation-efficient lines from recalcitrant barley cultivars.


Assuntos
Haplótipos/genética , Hordeum/genética , Proteínas de Plantas/genética , Agrobacterium tumefaciens/genética , Mapeamento Cromossômico , Genótipo , Haploidia , Sementes/genética , Transformação Genética/genética
12.
Plant J ; 84(1): 216-27, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26252423

RESUMO

Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley-Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Genoma de Planta/genética , Hordeum/genética , Dados de Sequência Molecular
13.
Mol Plant Microbe Interact ; 29(5): 385-95, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26927001

RESUMO

The discovery of barley Mlo demonstrated that filamentous pathogens rely on plant genes to achieve entry and lifecycle completion in barley leaves. While having a dramatic effect on foliar pathogens, it is unclear whether overlapping or distinct mechanisms affect filamentous pathogen infection of roots. To remove the bias connected with using different pathogens to understand colonization mechanisms in different tissues, we have utilized the aggressive hemibiotrophic oomycete pathogen Phytophthora palmivora. P. palmivora colonizes root as well as leaf tissues of barley (Hordeum vulgare). The infection is characterized by a transient biotrophy phase with formation of haustoria. Barley accessions varied in degree of susceptibility, with some accessions fully resistant to leaf infection. Notably, there was no overall correlation between degree of susceptibility in roots compared with leaves, suggesting that variation in different genes influences host susceptibility above and below ground. In addition, a developmental gradient influenced infection, with more extensive colonization observed in mature leaf sectors. The mlo5 mutation attenuates P. palmivora infection but only in young leaf tissues. The barley-P. palmivora interaction represents a simple system to identify and compare genetic components governing quantitative colonization in diverse barley tissue types.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Hordeum , Phytophthora/fisiologia , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Mutação , Phytophthora/classificação , Doenças das Plantas/microbiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/microbiologia
14.
Theor Appl Genet ; 129(4): 831-843, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26754419

RESUMO

KEY MESSAGE: We uncouple host and nonhost resistance in barley to Puccinia striiformis ff. spp. hordei and tritici . We isolate, fine map, and physically anchor Rps6 to chromosome 7H in barley. A plant may be considered a nonhost of a pathogen if all known genotypes of a plant species are resistant to all known isolates of a pathogen species. However, if a small number of genotypes are susceptible to some known isolates of a pathogen species this plant may be considered an intermediate host. Barley (Hordeum vulgare) is an intermediate host for Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust. We wanted to understand the genetic architecture underlying resistance to Pst and to determine whether any overlap exists with resistance to the host pathogen, Puccinia striiformis f. sp. hordei (Psh). We mapped Pst resistance to chromosome 7H and show that host and intermediate host resistance is genetically uncoupled. Therefore, we designate this resistance locus Rps6. We used phenotypic and genotypic selection on F2:3 families to isolate Rps6 and fine mapped the locus to a 0.1 cM region. Anchoring of the Rps6 locus to the barley physical map placed the region on a single fingerprinted contig spanning a physical region of 267 kb. Efforts are now underway to sequence the minimal tiling path and to delimit the physical region harboring Rps6. This will facilitate additional marker development and permit identification of candidate genes in the region.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Hordeum/genética , Doenças das Plantas/genética , Análise de Variância , Basidiomycota , Mapeamento Cromossômico , DNA de Plantas/genética , Marcadores Genéticos , Hordeum/microbiologia , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Análise de Sequência de DNA , Transcriptoma
15.
PLoS Genet ; 7(7): e1002208, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21829384

RESUMO

Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host-pathogen interaction with enhancement of R-gene mediated resistance.


Assuntos
Regulação da Expressão Gênica de Plantas/imunologia , Hordeum/genética , Hordeum/imunologia , Transcrição Gênica , Alelos , Basidiomycota/genética , Genes de Plantas , Hordeum/microbiologia , Interações Hospedeiro-Patógeno , Fenótipo , Imunidade Vegetal/genética , Caules de Planta/genética , Caules de Planta/imunologia , Caules de Planta/microbiologia , Locos de Características Quantitativas/genética , Plântula/genética , Plântula/imunologia
16.
Plant Cell ; 21(10): 3280-95, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19861556

RESUMO

Programmed cell death (PCD) plays a pivotal role in plant development and defense. To investigate the interaction between PCD and R gene-mediated defense, we used the 22K Barley1 GeneChip to compare and contrast time-course expression profiles of Blumeria graminis f. sp hordei (Bgh) challenged barley (Hordeum vulgare) cultivar C.I. 16151 (harboring the Mla6 powdery mildew resistance allele) and its fast neutron-derived Bgh-induced tip cell death1 mutant, bcd1. Mixed linear model analysis identified genes associated with the cell death phenotype as opposed to R gene-mediated resistance. One-hundred fifty genes were found at the threshold P value < 0.0001 and a false discovery rate <0.6%. Of these, 124 were constitutively overexpressed in the bcd1 mutant. Gene Ontology and rice (Oryza sativa) alignment-based annotation indicated that 68 of the 124 overexpressed genes encode ribosomal proteins. A deletion harboring six genes on chromosome 5H cosegregates with bcd1-specified cell death and is associated with misprocessing of rRNAs but segregates independent of R gene-mediated resistance. Barley stripe mosaic virus-induced gene silencing of one of the six deleted genes, RRP46 (rRNA-processing protein 46), phenocopied bcd1-mediated tip cell death. These findings suggest that RRP46, a critical component of the exosome core, mediates RNA processing and degradation involved in cell death initiation as a result of attempted penetration by Bgh during the barley-powdery mildew interaction but is independent of gene-for-gene resistance.


Assuntos
Ascomicetos/fisiologia , Morte Celular/fisiologia , Genes de RNAr/fisiologia , Hordeum/metabolismo , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , RNA Ribossômico/metabolismo , Morte Celular/genética , Clonagem Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de RNAr/genética , Hordeum/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/genética , Proteínas de Plantas/genética , RNA Ribossômico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Plant Genome ; 15(2): e20187, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35302294

RESUMO

Disease lesion mimic (DLM) or necrotic mutants display necrotic lesions in the absence of pathogen infections. They can show improved resistance to some pathogens and their molecular dissection can contribute to revealing components of plant defense pathways. Although forward-genetics strategies to find genes causal to mutant phenotypes are available in crops, these strategies require the production of experimental cross populations, mutagenesis, or gene editing and are time- and resource-consuming or may have to deal with regulated plant materials. In this study, we described a collection of 34 DLM mutants in barley (Hordeum vulgare L.) and applied a novel method called complementation by sequencing (CBS), which enables the identification of the gene responsible for a mutant phenotype given the availability of two or more chemically mutagenized individuals showing the same phenotype. Complementation by sequencing relies on the feasibility to obtain all induced mutations present in chemical mutants and on the low probability that different individuals share the same mutated genes. By CBS, we identified a cytochrome P450 CYP71P1 gene as responsible for orange blotch DLM mutants, including the historical barley nec3 locus. By comparative phylogenetic analysis we showed that CYP71P1 gene family emerged early in angiosperm evolution but has been recurrently lost in some lineages including Arabidopsis thaliana (L.) Heynh. Complementation by sequencing is a straightforward cost-effective approach to clone genes controlling phenotypes in a chemically mutagenized collection. The TILLMore (TM) collection will be instrumental for understanding the molecular basis of DLM phenotypes and to contribute knowledge about mechanisms of host-pathogen interaction.


Assuntos
Arabidopsis , Hordeum , Arabidopsis/genética , Clonagem Molecular , Genes de Plantas , Hordeum/genética , Mutação , Filogenia
18.
Nat Commun ; 13(1): 2386, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501307

RESUMO

Leaf rust, caused by Puccinia hordei, is an economically significant disease of barley, but only a few major resistance genes to P. hordei (Rph) have been cloned. In this study, gene Rph3 was isolated by positional cloning and confirmed by mutational analysis and transgenic complementation. The Rph3 gene, which originated from wild barley and was first introgressed into cultivated Egyptian germplasm, encodes a unique predicted transmembrane resistance protein that differs from all known plant disease resistance proteins at the amino acid sequence level. Genetic profiles of diverse accessions indicated limited genetic diversity in Rph3 in domesticated germplasm, and higher diversity in wild barley from the Eastern Mediterranean region. The Rph3 gene was expressed only in interactions with Rph3-avirulent P. hordei isolates, a phenomenon also observed for transcription activator-like effector-dependent genes known as executors conferring resistance to Xanthomonas spp. Like known transmembrane executors such as Bs3 and Xa7, heterologous expression of Rph3 in N. benthamiana induced a cell death response. The isolation of Rph3 highlights convergent evolutionary processes in diverse plant-pathogen interaction systems, where similar defence mechanisms evolved independently in monocots and dicots.


Assuntos
Basidiomycota , Hordeum , Basidiomycota/fisiologia , Hordeum/genética , Proteínas de Membrana , Doenças das Plantas/genética , Proteínas de Plantas/genética , Puccinia
19.
Sci Adv ; 8(27): eabn7258, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857460

RESUMO

In the evolution of land plants, the plant immune system has experienced expansion in immune receptor and signaling pathways. Lineage-specific expansions have been observed in diverse gene families that are potentially involved in immunity but lack causal association. Here, we show that Rps8-mediated resistance in barley to the pathogen Puccinia striiformis f. sp. tritici (wheat stripe rust) is conferred by a genetic module: Pur1 and Exo70FX12, which are together necessary and sufficient. Pur1 encodes a leucine-rich repeat receptor kinase and is the ortholog of rice Xa21, and Exo70FX12 belongs to the Poales-specific Exo70FX clade. The Exo70FX clade emerged after the divergence of the Bromeliaceae and Poaceae and comprises from 2 to 75 members in sequenced grasses. These results demonstrate the requirement of a lineage-specific Exo70FX12 in Pur1-mediated immunity and suggest that the Exo70FX clade may have evolved a specialized role in receptor kinase signaling.

20.
Nat Commun ; 13(1): 1607, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338132

RESUMO

The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines show high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance.


Assuntos
Aegilops , Basidiomycota , Aegilops/genética , Basidiomycota/genética , Resistência à Doença/genética , Genes de Plantas/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa