Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Toxicol Appl Pharmacol ; 366: 64-74, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30685480

RESUMO

The anticancer drug ellipticine exerts its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes. The present study has examined the role of cytochrome P450 oxidoreductase (POR) and cytochrome b5 (Cyb5), electron donors to P450 enzymes, in the CYP-mediated metabolism and disposition of ellipticine in vivo. We used Hepatic Reductase Null (HRN) and Hepatic Cytochrome b5/P450 Reductase Null (HBRN) mice. HRN mice have POR deleted specifically in hepatocytes; HBRN mice also have Cyb5 deleted in the liver. Mice were treated once with 10 mg/kg body weight ellipticine (n = 4/group) for 24 h. Ellipticine-DNA adduct levels measured by 32P-postlabelling were significantly lower in HRN and HBRN livers than in wild-type (WT) livers; however no significant difference was observed between HRN and HBRN livers. Ellipticine-DNA adduct formation in WT, HRN and HBRN livers correlated with Cyp1a and Cyp3a enzyme activities measured in hepatic microsomes in the presence of NADPH confirming the importance of P450 enzymes in the bioactivation of ellipticine in vivo. Hepatic microsomal fractions were also utilised in incubations with ellipticine and DNA in the presence of NADPH, cofactor for POR, and NADH, cofactor for Cyb5 reductase (Cyb5R), to examine ellipticine-DNA adduct formation. With NADPH adduct formation decreased as electron donors were lost which correlated with the formation of the reactive metabolites 12- and 13-hydroxy-ellipticine in hepatic microsomes. No difference in adduct formation was observed in the presence of NADH. Our study demonstrates that Cyb5 contributes to the P450-mediated bioactivation of ellipticine in vitro, but not in vivo.


Assuntos
Antineoplásicos/metabolismo , Citocromo-B(5) Redutase/deficiência , Citocromos b5/deficiência , Elipticinas/metabolismo , Hepatócitos/enzimologia , Fígado/enzimologia , Ativação Metabólica , Animais , Antineoplásicos/farmacologia , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo-B(5) Redutase/genética , Citocromos b5/genética , Adutos de DNA/metabolismo , Elipticinas/farmacologia , Genótipo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microssomos Hepáticos/enzimologia , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Fenótipo
2.
Arch Toxicol ; 92(4): 1625-1638, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29368147

RESUMO

Benzo[a]pyrene (BaP) is an environmental pollutant that, based on evidence largely from in vitro studies, exerts its genotoxic effects after metabolic activation by cytochrome P450s. In the present study, Hepatic Reductase Null (HRN) and Hepatic Cytochrome b 5 /P450 Reductase Null (HBRN) mice have been used to study the role of P450s in the metabolic activation of BaP in vivo. In HRN mice, cytochrome P450 oxidoreductase (POR), the electron donor to P450, is deleted specifically in hepatocytes. In HBRN mice the microsomal haemoprotein cytochrome b 5 , which can also act as an electron donor from cytochrome b 5 reductase to P450s, is also deleted in the liver. Wild-type (WT), HRN and HBRN mice were treated by i.p. injection with 125 mg/kg body weight BaP for 24 h. Hepatic microsomal fractions were isolated from BaP-treated and untreated mice. In vitro incubations carried out with BaP-pretreated microsomal fractions, BaP and DNA resulted in significantly higher BaP-DNA adduct formation with WT microsomal fractions compared to those from HRN or HBRN mice. Adduct formation (i.e. 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP [dG-N2-BPDE]) correlated with observed CYP1A activity and metabolite formation (i.e. BaP-7,8-dihydrodiol) when NADPH or NADH was used as enzymatic cofactors. BaP-DNA adduct levels (i.e. dG-N2-BPDE) in vivo were significantly higher (~ sevenfold) in liver of HRN mice than WT mice while no significant difference in adduct formation was observed in liver between HBRN and WT mice. Our results demonstrate that POR and cytochrome b 5 both modulate P450-mediated activation of BaP in vitro. However, hepatic P450 enzymes in vivo appear to be more important for BaP detoxification than its activation.


Assuntos
Benzo(a)pireno/metabolismo , Citocromo-B(5) Redutase/metabolismo , Adutos de DNA/metabolismo , Hepatócitos/enzimologia , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Animais , Camundongos , Camundongos Knockout , Microssomos Hepáticos/enzimologia
3.
Chem Res Toxicol ; 29(8): 1325-34, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27404282

RESUMO

Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the coenzymes of these reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of CBR, to mediate BaP oxidation. Two systems containing human P450 1A1 were utilized: human recombinant P450 1A1 expressed with POR, CBR, epoxide hydrolase, and cytochrome b5 in Supersomes and human recombinant P450 1A1 reconstituted with POR and/or with CBR and cytochrome b5 in liposomes. BaP-9,10-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol, BaP-3-ol, a metabolite of unknown structure, and two BaP-DNA adducts were generated by the P450 1A1-Supersomes system, both in the presence of NADPH and in the presence of NADH. The major BaP-DNA adduct detected by (32)P-postlabeling was characterized as 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (assigned adduct 1), while the minor adduct is probably a guanine adduct derived from 9-hydroxy-BaP-4,5-epoxide (assigned adduct 2). BaP-3-ol as the major metabolite, BaP-9-ol, BaP-1,6-dione, BaP-3,6-dione, an unknown metabolite, and adduct 2 were observed in the system using P450 1A1 reconstituted with POR plus NADPH. When P450 1A1 was reconstituted with CBR and cytochrome b5 plus NADH, BaP-3-ol was the predominant metabolite too, and an adduct 2 was also generated. Our results demonstrate that the NADH/cytochrome b5/CBR system can act as the sole electron donor both for the first and second reduction of P450 1A1 during the oxidation of BaP in vitro. They suggest that NADH-dependent CBR can replace NADPH-dependent POR in the P450 1A1-catalyzed metabolism of BaP.


Assuntos
Benzo(a)pireno/toxicidade , Citocromo-B(5) Redutase/metabolismo , Adutos de DNA/metabolismo , Humanos , Oxirredução
4.
Arch Toxicol ; 90(4): 839-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25995008

RESUMO

The tumour suppressor p53 is one of the most important cancer genes. Previous findings have shown that p53 expression can influence DNA adduct formation of the environmental carcinogen benzo[a]pyrene (BaP) in human cells, indicating a role for p53 in the cytochrome P450 (CYP) 1A1-mediated biotransformation of BaP in vitro. We investigated the potential role of p53 in xenobiotic metabolism in vivo by treating Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice with BaP. BaP-DNA adduct levels, as measured by (32)P-postlabelling analysis, were significantly higher in liver and kidney of Trp53(-/-) mice than of Trp53(+/+) mice. Complementarily, significantly higher amounts of BaP metabolites were also formed ex vivo in hepatic microsomes from BaP-pretreated Trp53(-/-) mice. Bypass of the need for metabolic activation by treating mice with BaP-7,8-dihydrodiol-9,10-epoxide resulted in similar adduct levels in liver and kidney in all mouse lines, confirming that the influence of p53 is on the biotransformation of the parent compound. Higher BaP-DNA adduct levels in the livers of Trp53(-/-) mice correlated with higher CYP1A protein levels and increased CYP1A enzyme activity in these animals. Our study demonstrates a role for p53 in the metabolism of BaP in vivo, confirming previous in vitro results on a novel role for p53 in CYP1A1-mediated BaP metabolism. However, our results also suggest that the mechanisms involved in the altered expression and activity of the CYP1A1 enzyme by p53 in vitro and in vivo are different.


Assuntos
Benzo(a)pireno/farmacocinética , Carcinógenos Ambientais/farmacocinética , Dano ao DNA/genética , Proteína Supressora de Tumor p53/genética , Ativação Metabólica , Animais , Benzo(a)pireno/metabolismo , Carcinógenos Ambientais/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Adutos de DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Inativação Metabólica , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Proteína Supressora de Tumor p53/metabolismo
5.
Neuro Endocrinol Lett ; 36 Suppl 1: 46-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26757127

RESUMO

OBJECTIVES: Dihydromyricetin (DHM) is a flavonoid, which has been shown to antagonize effects of ethanol intoxication. As a potential pharmacological agent, its biological interactions with enzymes metabolizing foreign compounds should be tested. Thus, the aim of this study was to analyze the influence of DHM on the induction and metabolic activity of selected cytochromes P450 (CYPs). METHODS: After flavonoid administration by oral gavage to stomach the CYP expression at protein and mRNA levels was determined in rat liver and small intestine. The effects of flavonoids on CYP1A1/2, CYP1A2 or CYP2B1/2 enzyme activities in microsomes were measured using marker activities of these enzymes. Flavonoid-mediated inhibition of recombinant CYP1A2 was also assayed with luciferin-ME substrate. The flavonoid interaction with aryl hydrocarbon receptor (AhR) was assayed by reporter luciferase activity in Hep2G cells. RESULTS: The value of half maximal inhibitory concentration of DHM for CYP1A1/2, CYP1A2, and CYP2B1 were determined to be 4.1, 14.2, and 98.5 mmol.L(-1), respectively. With the exception of a weak induction of CYP2B1 and CYP1A2 in the middle part of small intestine and in the liver, respectively, DHM did not affect the CYP expression at protein levels. On the contrary, real-time PCR revealed elevated expression of CYP1A1 and CYP1A2 mRNA in proximal part of the small intestine while decreased in the middle part. In the study utilizing the HepG2 cells, DHM showed only an additive effect on the benzo[a]pyrene-mediated activation of Ah receptor. CONCLUSIONS: Dihydromyricetin doesn't significantly interfere with metabolic activity of CYP1A1/2 and CYP2B1 enzymes.


Assuntos
Carcinógenos/metabolismo , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Flavonóis/farmacologia , RNA Mensageiro/efeitos dos fármacos , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Concentração Inibidora 50 , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/enzimologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Neuro Endocrinol Lett ; 35 Suppl 2: 105-13, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25638374

RESUMO

OBJECTIVES: Cytochrome P450 (CYP) 1A1 located in the membrane of endoplasmic reticulum is the most important enzyme in both activation and detoxification of carcinogenic benzo[a]pyrene (BaP), in combination with microsomal epoxide hydrolase (mEH). However, it is still not clearly explained how the electron transfer is mediated by NADPH:CYP oxidoreductase (POR), another component of the microsomal enzymatic system, on CYP1A1 during BaP oxidation, and whether microsomal cytochrome b5 might influence this electron transfer. METHODS: High performance liquid chromatography (HPLC) was employed for separation of BaP metabolites formed by enzymatic systems containing human CYP1A1. RESULTS: Human CYP1A1 expressed with POR in eukaryotic and prokaryotic expression cellular systems, in microsomes of insect cells (Supersomes) and in a membrane fraction of Escherichia coli, respectively, and these enzyme systems reconstituted with purified cytochrome b5 were utilized to study BaP oxidation. Human CYP1A1 expressed in Supersomes oxidized BaP to seven metabolites [7,8- and 9,10-dihydrodiols, 1,6-dione, 3,6-dione, 3- and 9-phenols, and a metabolite with unknown structure (Mx)], whereas this enzyme expressed in membranes of E. coli formed only the metabolites 1,6- and 3,6-diones, 3- and 9-phenols, and Mx. Addition of cytochrome b5 to CYP1A1 expressed in the eukaryotic system led to a more than 2-fold increase in BaP metabolism, but had essentially no effect on BaP oxidation by CYP1A1 expressed in E. coli. CONCLUSION: The effect of cytochrome b5 on CYP1A1 conformation and the electron transfer to this enzyme may contribute to the cytochrome b5-mediated stimulation of BaP oxidation.


Assuntos
Benzo(a)pireno/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromos b5/metabolismo , NADH NADPH Oxirredutases/metabolismo , Humanos
7.
Neuro Endocrinol Lett ; 35 Suppl 2: 158-68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25638381

RESUMO

OBJECTIVES: Flavanol dihydromyricetin (DHM) has been shown to counteract acute ethanol (EtOH) intoxication and reduce excessive EtOH consumption. Since this flavonoid is being considered for human use, the in vivo study of DHM interactions with the cytochrome P450 (CYP) multienzyme system in the respect of metabolic activation of a model food-born carcinogen, benzo[a]pyrene (BaP), is of high importance. Flavonoids of known properties, alpha-naphthoflavone (ANF) and beta-naphthoflavone (BNF) were included into the study to compare their and DHM effects on BaP-DNA adduct formation. METH0 DS: The flavonoids were administered by oral gavage either 72 hrs prior or simultaneously with a single dose of BaP to experimental rats. The expression of CYP1A1/2 enzymes was examined based on the enzymatic activity with a marker substrate, 7-ethoxyresorufin, and on Western blots. The nuclease P1 version of the 32P-postlabeling assay was used to detect and quantify covalent DNA adducts formed by BaP. RESULTS: Treatment of rats with a single dose of DHM or ANF prior to or simultaneously with BaP did not produce an increase in levels of CYP1A1 and in formation of BaP-DNA adducts in liver. BNF, a known inducer of CYP1A1, showed a synergistic effect on BaP-mediated CYP1A1 induction and BaP activation in liver. Contrary to that, in small intestine the stimulatory effect of BNF on both parameters was not detected. Animal pre-treatment with DHM or ANF before BaP administration resulted in a significant elevation of BaP-DNA adducts, namely in the distal part of small intestine, while the CYP1A1 mediated 7-ethoxyresorufin-O-deethylation (EROD) was decreased markedly. It is important to note that under all regimens of animal treatment, DHM or ANF produced the higher inhibitory effect on the BaP-DNA adduct formation and BaP-induced EROD activity of CYP1A1 when administered simultaneously than sequentially with BaP. Our data show that DHM or ANF did not enhance the BaP-activation leading to BaP-mediated genotoxicity (the formation of BaP-DNA adducts) in rat liver, however, in small intestine the pretreatment of rats with these flavonoids may enhance BaP genotoxicity. CONCLUSIONS: The data indicate that the intake of DHM prior to or simultaneously with the administration of BaP may increase the risk of a BaP-induced tumorigenesis in small intestine.


Assuntos
Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Adutos de DNA/toxicidade , Flavonóis/farmacologia , Animais , Benzo(a)pireno/administração & dosagem , Carcinógenos/administração & dosagem , Adutos de DNA/administração & dosagem , Flavonóis/administração & dosagem , Masculino , Ratos , Ratos Wistar
8.
Int J Mol Sci ; 16(1): 284-306, 2014 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-25547492

RESUMO

Ellipticine is a DNA-damaging agent acting as a prodrug whose pharmacological efficiencies and genotoxic side effects are dictated by activation with cytochrome P450 (CYP). Over the last decade we have gained extensive experience in using pure enzymes and various animal models that helped to identify CYPs metabolizing ellipticine. In this review we focus on comparison between the in vitro and in vivo studies and show a necessity of both approaches to obtain valid information on CYP enzymes contributing to ellipticine metabolism. Discrepancies were found between the CYP enzymes activating ellipticine to 13-hydroxy- and 12-hydroxyellipticine generating covalent DNA adducts and those detoxifying this drug to 9-hydroxy- and 7-hydroellipticine in vitro and in vivo. In vivo, formation of ellipticine-DNA adducts is dependent not only on expression levels of CYP3A, catalyzing ellipticine activation in vitro, but also on those of CYP1A that oxidize ellipticine in vitro mainly to the detoxification products. The finding showing that cytochrome b5 alters the ratio of ellipticine metabolites generated by CYP1A1/2 and 3A4 explained this paradox. Whereas the detoxification of ellipticine by CYP1A and 3A is either decreased or not changed by cytochrome b5, activation leading to ellipticine-DNA adducts increased considerably. We show that (I) the pharmacological effects of ellipticine mediated by covalent ellipticine-derived DNA adducts are dictated by expression levels of CYP1A, 3A and cytochrome b5, and its own potency to induce these enzymes in tumor tissues, (II) animal models, where levels of CYPs are either knocked out or induced are appropriate to identify CYPs metabolizing ellipticine in vivo, and (III) extrapolation from in vitro data to the situation in vivo is not always possible, confirming the need for these animal models.


Assuntos
Antineoplásicos/farmacologia , Citocromo P-450 CYP1A1/metabolismo , Dano ao DNA , Elipticinas/farmacologia , Hepatócitos/efeitos dos fármacos , Desacopladores/farmacologia , Animais , Citocromo P-450 CYP1A1/deficiência , Citocromo P-450 CYP1A1/genética , Hepatócitos/metabolismo , Camundongos , Ratos
9.
Neuro Endocrinol Lett ; 34 Suppl 2: 43-54, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24362092

RESUMO

OBJECTIVES: The aim of this study was to investigate a role of cytochrome P450 (CYP) and peroxidase in ellipticine oxidative activation in two mouse strains differing in expression of NADPH:CYP reductase (POR) [the HRN (Hepatic Cytochrome P450 Reductase Null) mice, in which POR is deleted in hepatocytes and its wild-type (WT) counterpart], and in levels of CYP1A1/2 and cytochrome b5 that were modulated by treatment of these mouse models with a CYP1A inducer, benzo[a]pyrene (BaP). METHODS: Ellipticine-DNA adducts were detected by 32P-postlabeling. HPLC was employed for the separation and characterization of ellipticine metabolites. RESULTS: Hepatic microsomes of HRN and WT mice activate ellipticine to form ellipticine-derived DNA adducts. A 2.2- and 10.4-fold increase in amounts of ellipticine-derived DNA adducts formed by liver microsomes was caused by exposure of HRN and WT mice to BaP, respectively. The results found and utilization of NADPH and arachidonic acid, cofactors of CYP- and cyclooxygenase (COX)-dependent enzyme systems, respectively, as well as inhibitors of CYP1A1/2 and 3A, demonstrate that the CYP1A and 3A enzymes play a major role in ellipticine activation in liver microsomes. In addition, the COX enzyme is important in ellipticine activation in liver of HRN mice. CONCLUSION: The CYP1A and 3A enzymes activate ellipticine mainly in liver of WT mice, whereas peroxidase COX plays this role in liver of HRN mice. Treatment of mice with BaP increases an impact of CYP1A on ellipticine activation. A pattern of expression levels of these enzymes plays a crucial role in their impact on this process.


Assuntos
Antineoplásicos/farmacocinética , Benzo(a)pireno/farmacologia , Elipticinas/farmacocinética , Animais , Biotransformação/efeitos dos fármacos , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo
10.
Neuro Endocrinol Lett ; 34 Suppl 2: 55-63, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24362093

RESUMO

OBJECTIVES: Cytochrome P450 (CYP) 1A1 is the most important enzyme in both activation and detoxification of carcinogenic benzo[a]pyrene (BaP), in combination with microsomal epoxide hydrolase (mEH). To evaluate metabolism of BaP in human, identification of a suitable animal model that mimics the metabolic fate of BaP in human is of great importance. The aim of this work was to compare BaP oxidation by human CYP1A1 and CYP1A1 of one animal model, rat. Investigation of the effect of cytochrome b5 on BaP oxidation by CYP1A1 was another target of this study. METHODS: High performance liquid chromatography (HPLC) was employed for separation of BaP metabolites formed by enzymatic systems. Their structures were identified by mass- and NMR-spectrometry. RESULTS: Human hepatic microsomes oxidized BaP to BaP-9,10-dihydrodiol, BaP-4,5-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione and BaP-3-ol. The same metabolites were generated by rat liver microsomes, but BaP-9-ol and a metabolite Mx, the structure of which has not been identified as yet, were also formed in these microsomes. Human CYP1A1 expressed with NADPH:CYP reductase (POR) in Supersomes™ oxidized BaP to the same metabolites as microsomes, but BaP-4,5-dihydrodiol has not been detected. Rat recombinant CYP1A1 in this SupersomesTM system oxidized BaP to BaP-9,10-dihydrodiol, a metabolite Mx, BaP-4,5-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol and BaP-3-ol. Addition of cytochrome b5 to rat and human recombinant CYP1A1 systems led to a more than 2-fold increase in BaP oxidation. CONCLUSION: The results show similarities between human and rat CYP1A1 in BaP oxidation and demonstrate rats as a suitable model mimicking BaP oxidation in human.


Assuntos
Benzo(a)pireno/metabolismo , Carcinógenos/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromos b5/farmacologia , Animais , Humanos , Inativação Metabólica , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Oxirredução , Ratos
11.
Toxicol Appl Pharmacol ; 265(3): 360-7, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22982977

RESUMO

Aristolochic acid causes a specific nephropathy (AAN), Balkan endemic nephropathy, and urothelial malignancies. Using Western blotting suitable to determine protein expression, we investigated in several transgenic mouse lines expression of NAD(P)H:quinone oxidoreductase (NQO1)-the most efficient cytosolic enzyme that reductively activates aristolochic acid I (AAI). The mouse tissues used were from previous studies [Arlt et al., Chem. Res. Toxicol. 24 (2011) 1710; Stiborova et al., Toxicol. Sci. 125 (2012) 345], in which the role of microsomal cytochrome P450 (CYP) enzymes in AAI metabolism in vivo had been determined. We found that NQO1 levels in liver, kidney and lung of Cyp1a1⁻/⁻, Cyp1a2⁻/⁻ and Cyp1a1/1a2⁻/⁻ knockout mouse lines, as well as in two CYP1A-humanized mouse lines harboring functional human CYP1A1 and CYP1A2 and lacking the mouse Cyp1a1/1a2 orthologs, differed from NQO1 levels in wild-type mice. NQO1 protein and enzymic activity were induced in hepatic and renal cytosolic fractions isolated from AAI-pretreated mice, compared with those in untreated mice. Furthermore, this increase in hepatic NQO1 enzyme activity was associated with bioactivation of AAI and elevated AAI-DNA adduct levels in ex vivo incubations of cytosolic fractions with DNA and AAI. In conclusion, AAI appears to increase its own metabolic activation by inducing NQO1, thereby enhancing its own genotoxic potential.


Assuntos
Ácidos Aristolóquicos/farmacocinética , Nefropatia dos Bálcãs/enzimologia , Nefropatia dos Bálcãs/genética , Citocromo P-450 CYP1A1/deficiência , Citocromo P-450 CYP1A2/deficiência , Fígado/metabolismo , NAD(P)H Desidrogenase (Quinona)/biossíntese , Animais , Ácidos Aristolóquicos/toxicidade , Nefropatia dos Bálcãs/metabolismo , Western Blotting , Linhagem Celular , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citosol/enzimologia , Citosol/metabolismo , Adutos de DNA/metabolismo , Feminino , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , NAD(P)H Desidrogenase (Quinona)/metabolismo
12.
Chem Res Toxicol ; 25(5): 1075-85, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22390216

RESUMO

The antineoplastic alkaloid ellipticine is a prodrug, whose pharmacological efficiency is dependent on its cytochrome P450 (P450)- and/or peroxidase-mediated activation in target tissues. The P450 3A4 enzyme oxidizes ellipticine to five metabolites, mainly to 13-hydroxy- and 12-hydroxyellipticine, the metabolites responsible for the formation of ellipticine-13-ylium and ellipticine-12-ylium ions that generate covalent DNA adducts. Cytochrome b(5) alters the ratio of ellipticine metabolites formed by P450 3A4. While the amounts of the detoxication metabolites (7-hydroxy- and 9-hydroxyellipticine) were not changed with added cytochrome b(5), 12-hydroxy- and 13-hydroxyellipticine, and ellipticine N(2)-oxide increased considerably. The P450 3A4-mediated oxidation of ellipticine was significantly changed only by holo-cytochrome b(5), while apo-cytochrome b(5) without heme or Mn-cytochrome b(5) had no such effect. The change in amounts of metabolites resulted in an increased formation of covalent ellipticine-DNA adducts, one of the DNA-damaging mechanisms of ellipticine antitumor action. The amounts of 13-hydroxy- and 12-hydroxyellipticine formed by P450 3A4 were similar, but more than 7-fold higher levels of the adduct were formed by 13-hydroxyellipticine than by 12-hydroxyellipticine. The higher susceptibility of 13-hydroxyellipticine toward heterolytic dissociation to ellipticine-13-ylium in comparison to dissociation of 12-hydroxyellipticine to ellipticine-12-ylium, determined by quantum chemical calculations, explains this phenomenon. The amounts of the 13-hydroxyellipticine-derived DNA adduct significantly increased upon reaction of 13-hydroxyellipticine with either 3'-phosphoadenosine-5'-phosphosulfate or acetyl-CoA catalyzed by human sulfotransferases 1A1, 1A2, 1A3, and 2A1, or N,O-acetyltransferases 1 and 2. The calculated reaction free energies of heterolysis of the sulfate and acetate esters are by 10-17 kcal/mol more favorable than the energy of hydrolysis of 13-hydroxyellipticine, which could explain the experimental data.


Assuntos
Antineoplásicos Fitogênicos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Citocromos b5/metabolismo , Elipticinas/metabolismo , Pró-Fármacos/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Arilamina N-Acetiltransferase/metabolismo , DNA/metabolismo , Elipticinas/farmacologia , Humanos , Pró-Fármacos/farmacologia , Coelhos , Sulfotransferases/metabolismo
13.
Neuro Endocrinol Lett ; 33 Suppl 3: 8-15, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23353838

RESUMO

OBJECTIVES: 2-Nitrobenzanthrone (2-NBA) has recently been detected in ambient air particulate matter. Its isomer 3-nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. Understanding which enzymes are involved in metabolism of these toxicants is important in the assessment of individual susceptibility. Here, metabolism of 2-NBA and 3-NBA by rat and mouse hepatic microsomes containing cytochromes P450 (CYPs), their reductase (NADPH:CYP reductase), and NADH:cytochrome b5 reductase was investigated under anaerobic and aerobic conditions. In addition, using the same microsomal systems, 2-NBA and 3-NBA were evaluated to be enzymatically activated under anaerobic conditions to species generating 2-NBA- and 3-NBA-derived DNA adducts. METHODS: High performance liquid chromatography (HPLC) with ultraviolet (UV) detection was employed for the separation and characterization of 2-NBA and 3-NBA metabolites formed by hepatic microsomes of rats and mice under the anaerobic and aerobic conditions. Microsomal systems isolated from the liver of the control (untreated) rats and rats pretreated with Sudan I, ß-naphthoflavone (ß-NF), phenobarbital (PB), ethanol and pregnenolon 16α-carbonitrile (PCN), the inducers of cytochromes P450 (CYP) 1A1, 1A1/2, 2B, 2E1 and 3A, respectively, were used in this study. Microsomes of mouse models, a control mouse line (wild-type, WT) and Hepatic Cytochrome P450 Reductase Null (HRN) mice with deleted gene of NADPH:CYP reductase in the liver, thus absenting this enzyme in their livers, were also employed. To detect and quantify the 2-NBA- and 3-NBA-derived DNA adducts, the 32P postlabeling technique was used. RESULTS: Both reductive metabolite of 3-NBA, 3-aminobenzanthrone (3-ABA), found to be formed predominantly under the anaerobic conditions, and two 3-NBA oxidative metabolites, whose structures have not yet been investigated, were formed by several microsomal systems used in the study. Whereas a 3-NBA reductive metabolite, 3-ABA, was found only in the microsomal systems of control rats, the rats treated with ß-NF and PB, and microsomes of WT and HRN mice, all hepatic microsomes tested in the study were capable of activating this carcinogen under the reductive conditions to form DNA adducts. A stability of a reactive intermediate of 3-NBA, N-hydroxy-3-aminobenzanthrone that is formed during 3-NBA reduction to 3-ABA, to form nitrenium (and/or carbenium) ions binding to DNA in individual microsomes as well as binding of these ions to proteins of these microsomes, might be the reasons explaining this phenomenon. In contrast to 3-NBA, its isomer 2-NBA was not metabolized by any of the used enzymatic systems both under the anaerobic and aerobic conditions. Likewise, no DNA adducts were detectable after reaction of 2-NBA in these systems with DNA. CONCLUSIONS: The results found in this study, the first report on the metabolism of 2-NBA and 3-NBA by rat and mouse hepatic microsomes demonstrate that 3-NBA, in contrast to 2-NBA, is reductively activated to form 3-NBA-derived DNA adducts by these enzymatic systems. NADPH:CYP reductase can be responsible for formation of these DNA adducts in rat livers, while NADH:cytochrome b5 reductase can contribute to this process in livers of HRN mice.


Assuntos
Poluentes Atmosféricos/farmacocinética , Benzo(a)Antracenos/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Inativação Metabólica/fisiologia , Microssomos Hepáticos/enzimologia , Aerobiose/fisiologia , Poluentes Atmosféricos/toxicidade , Anaerobiose/fisiologia , Animais , Benzo(a)Antracenos/toxicidade , Carcinógenos/farmacocinética , Carcinógenos/toxicidade , Citocromo-B(5) Redutase/genética , Citocromo-B(5) Redutase/metabolismo , Adutos de DNA/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Modelos Animais , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Ratos , Ratos Wistar , Especificidade por Substrato/fisiologia , Saúde da População Urbana , Emissões de Veículos/toxicidade
15.
Neuro Endocrinol Lett ; 32 Suppl 1: 101-16, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22167207

RESUMO

OBJECTIVES: Valproic acid (VPA) and trichostatin A (TSA) exert antitumor activity as histone deacetylase inhibitors, whereas ellipticine action is based mainly on DNA intercalation, inhibition of topoisomerase II and formation of cytochrome P450 (CYP)- and peroxidase-mediated covalent DNA adducts. This is the first report on the molecular mechanism of combined treatment of human neuroblastoma UKF-NB-3 and UKF-NB-4 cells with these compounds. METHODS: HPLC with UV detection was employed for the separation and characterization of ellipticine metabolites formed by microsomes and peroxidases. Covalent DNA modifications by ellipticine in neuroblastoma cells and in incubations with microsomes and peroxidases were detected by 32P-postlabeling. Expression of CYP enzymes, peroxidases and cytochrome b5 was examined by Western blot. RESULTS: The cytotoxicity of ellipticine to neuroblastomas was increased by pre-treating these cells with VPA or TSA. A higher sensitivity of cells to ellipticine correlated with an increase in formation of covalent ellipticine-derived DNA adducts in these cells. To evaluate the mechanisms of this finding, we investigated the modulation by VPA and TSA of CYP- and peroxidase-mediated ellipticine-derived DNA adduct formation in vitro. The effects of ellipticine in the presence of VPA and TSA on expression of CYPs and peroxidases relevant for ellipticine activation and levels of cytochrome b5 and P-glycoprotein in neuroblastoma cells were also investigated. Based on these studies, we attribute most of the enhancing effects of VPA and TSA on ellipticine cytotoxicity to enhanced ellipticine-DNA adduct formation caused by an increase in levels of cytochrome b5, CYP3A4 and CYP1A1 in neuroblastoma cells. A lower sensitivity of UKF-NB-4 cells to combined effects of ellipticine with VPA and TSA than of UKF-NB-3 cells is also attributable to high levels of P-glycoprotein expressed in this cell line. CONCLUSION: The results found here warrant further studies and may help in the design of new protocols geared to the treatment of high risk neuroblastomas.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Dano ao DNA , Elipticinas/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Neuroblastoma/tratamento farmacológico , Ácido Valproico/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Elipticinas/farmacologia , Inibidores de Histona Desacetilases/administração & dosagem , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Modelos Biológicos , Neuroblastoma/genética , Neuroblastoma/patologia , Ratos , Resultado do Tratamento , Células Tumorais Cultivadas , Ácido Valproico/farmacologia
16.
Neuro Endocrinol Lett ; 31 Suppl 2: 26-35, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21187821

RESUMO

OBJECTIVE: Ellipticine is a potent antineoplastic agent exhibiting multiple mechanisms of action. This anticancer agent should be considered a pro-drug, whose pharmacological efficiency and/or genotoxic side effects are dependent on its cytochrome P450 (CYP)- and/or peroxidase-mediated activation to species forming covalent DNA adducts. The target of this study was to investigate a role of CYP and peroxidase enzymes in ellipticine oxidative activation in rats, a suitable model mimicking the fate of ellipticine in humans, in details. The contribution of pulmonary and renal CYP- and peroxidase enzymes to ellipticine metabolic activation is investigated and compared with that found in the liver. METHODS: Ellipticine oxidation and DNA adduct formation in vitro were investigated using microsomes isolated from liver, lung and kidney of rats, either control (untreated) or treated i.p. with a single dose of 40 mg of ellipticine per kg of body weight. HPLC with UV detection was employed for the separation and characterization of ellipticine metabolites. Inhibitors of CYPs and cyclooxygenase (prostaglandin H synthase, COX) were used to characterize the enzymes participating in ellipticine oxidative activation in rat liver, lung and kidney. Ellipticine-derived DNA adducts were detected by 32P-postlabeling. RESULTS: Using α-naphthoflavone, furafylline and ketoconazole, inhibitors of CYP1A, 1A2 and 3A, respectively, we found that the CYP1A and 3A enzymes play a major role in ellipticine activation to species forming DNA adducts in liver microsomes. Because of lower expression of these enzymes in lungs and kidneys, even after their induction by ellipticine, they play a minor role in ellipticine activation in these extrahepatic tissues. Arachidonic acid, a cofactor of COX, increased ellipticine activation in the microsomes of extrahepatic tissues. In addition, indomethacin, an inhibitor of COX, efficiently inhibited formation of ellipticine-derived DNA adduct in these microsomes. Based on these results, we attribute the higher activation of ellipticine in lung and kidney microsomes to COX than to CYP enzymes. CONCLUSION: The results demonstrate that whereas CYP enzymes of 1A and 3A subfamilies are the major enzymes activating ellipticine in rat livers, peroxidase COX plays a significant role in this process in lungs and kidneys.


Assuntos
Antineoplásicos/metabolismo , Sistema Enzimático do Citocromo P-450/fisiologia , Elipticinas/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Peroxidases/fisiologia , Animais , Biotransformação/efeitos dos fármacos , Adutos de DNA/efeitos dos fármacos , Masculino , Microssomos/efeitos dos fármacos , Microssomos/metabolismo , Modelos Animais , Oxirredução/efeitos dos fármacos , Ratos , Ratos Wistar
17.
Neuro Endocrinol Lett ; 29(5): 728-32, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18987592

RESUMO

OBJECTIVES: Ellipticine is a potent antineoplastic agent exhibiting multiple mechanisms of its action. Recently, we have found that 13-hydroxyellipticine, formed from ellipticine as the predominant metabolite in human livers, is bound to deoxyguanosine in DNA, generating the major DNA adduct in vivo and in vitro. The development of the methods suitable for the preparation of this adduct in the amounts sufficient for identification of its structure and those for its isolation and partial characterization is the aim of this study. METHODS: High performance liquid chromatography (HPLC) was employed for separation of 13-hydroxyellipticine-mediated deoxyguanosine adduct. The 32P-postlabeling technique was utilized to detect this adduct in DNA. RESULTS: The formation of the 13-hydroxyellipticine-derived deoxyguanosine adduct in DNA in vitro was increased under the alkaline pH of the incubations and by the formation of the sulfate and acetate conjugates of 13-hydroxyellipticine generated by reactions with 3'-phosphoadenosine-5'-phosphosulfate (PAPS) or acetyl-coenzyme A (acetyl-CoA) catalyzed by human sulfotransferases (SULTs) 1A1 and 1A2 and N,O-acetyltransferases (NATs) 1 and 2. The HPLC method suitable for separation the 13-hydroxyellipticine-derived deoxyguanosine adduct from other reactants, deoxyguanosine and 13-hydroxyellipticine, was developed. The structure of this adduct is proposed to correspond to the product formed from ellipticine-13-ylium with the exocyclic 2-NH2 group of guanine in DNA. CONCLUSIONS: The data are the first report on HPLC isolation of the deoxyguanosine adduct formed by 13-hydroxyellipticine in DNA and its partial characterization.


Assuntos
Adutos de DNA/química , DNA/química , Desoxiguanosina/química , Elipticinas/química , Acetilcoenzima A/metabolismo , Arilamina N-Acetiltransferase/metabolismo , Arilsulfotransferase/metabolismo , Autorradiografia , Catálise , Adutos de DNA/isolamento & purificação , Concentração de Íons de Hidrogênio , Indicadores e Reagentes , Isoenzimas/metabolismo , Fosfoadenosina Fosfossulfato/química
18.
Monatsh Chem ; 148(11): 1959-1969, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104317

RESUMO

ABSTRACT: Cytochrome P450 (CYP) 1A1 is the most important enzyme activating and detoxifying the human carcinogen benzo[a]pyrene (BaP). In the previous studies, we had shown that not only the canonic NADPH:CYP oxidoreductase (POR) can act as electron donor but also cytochrome b5 and its reductase, NADH:cytochrome b5 reductase. Here, we studied the role of the expression system used on the metabolites generated and the levels of DNA adducts formed by activated BaP. We used an eukaryotic and a prokaryotic cellular system (Supersomes, microsomes isolated from insect cells, and Bactosomes, a membrane fraction of Escherichia coli, each transfected with cDNA of human CYP1A1 and POR). These were reconstituted with cytochrome b5 with and without NADH:cytochrome b5 reductase. We evaluated the effectiveness of each cofactor, NADPH and NADH, to mediate BaP metabolism. We found that both systems differ in catalysing the reactions activating and detoxifying BaP. Two BaP-derived DNA adducts were generated by the CYP1A1-Supersomes, both in the presence of NADPH and NADH, whereas NADPH but not NADH was able to support this reaction in the CYP1A1-Bactosomes. Seven BaP metabolites were found in Supersomes with NADPH or NADH, whereas NADPH but not NADH was able to generate five BaP metabolites in Bactosomes. Our study demonstrates different catalytic efficiencies of CYP1A1 expressed in prokaryotic and eukaryotic cells in BaP bioactivation indicating some limitations in the use of E. coli cells for such studies.

19.
Environ Mol Mutagen ; 57(3): 229-35, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26919089

RESUMO

Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after metabolic activation by cytochrome P450 (CYP) enzymes. In this study human recombinant CYPs (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2E1, 3A4, and 3A5) were expressed in Supersomes™ together with their reductases, NADPH:CYP oxidoreductase, epoxide hydrolase and cytochrome b5 , to investigate BaP metabolism. Human CYPs produced up to eight BaP metabolites. Among these, BaP-7,8-dihydrodiol and BaP-9-ol, which are intermediates in BaP-derived DNA adduct formation, were mainly formed by CYP1A1 and 1B1, and to a lesser extent by CYP2C19 and 3A4. BaP-3-ol, a metabolite that is a 'detoxified' product of BaP, was formed by most human CYPs tested, although CYP1A1 and 1B1 produced it the most efficiently. Based on the amounts of the individual BaP metabolites formed by these CYPs and their expression levels in human liver, we determined their contributions to BaP metabolite formation in this organ. Our results indicate that hepatic CYP1A1 and CYP2C19 are most important in the activation of BaP to BaP-7,8-dihydrodiol, whereas CYP2C19, 3A4, and 1A1 are the major enzymes contributing to the formation of BaP-9-ol. BaP-3-ol is predominantly formed by hepatic CYP3A4, while CYP1A1 and 2C19 are less active.


Assuntos
Benzo(a)pireno/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Animais , Benzo(a)pireno/metabolismo , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/genética , Adutos de DNA/metabolismo , Humanos , Inativação Metabólica , Fígado/enzimologia , Microssomos Hepáticos/metabolismo , Oxirredução , Coelhos
20.
Monatsh Chem ; 147: 881-888, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27110039

RESUMO

ABSTRACT: Cytochrome P450 (CYP) 2S1 is "orphan" CYP that is overexpressed in several epithelial tissues and many human tumors. The pure enzyme is required for better understanding of its biological functions. Therefore, human CYP2S1 was considered to be prepared by the gene manipulations and heterologous expression in Escherichia coli. Here, the conditions suitable for efficient expression of human CYP2S1 protein from plasmid pCW containing the human CYP2S1 gene were optimized and the enzyme purified to homogeneity. The identity of CYP2S1 as the product of heterologous expression was confirmed by dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, and mass spectrometry. To confirm the presence of the enzymatically active CYP2S1, the CO spectrum of purified CYP2S1 was recorded. Since CYP2S1 was shown to catalyze oxidation of compounds having polycyclic aromatic structures, the prepared enzyme has been tested to metabolize the compounds having this structural character; namely, the human carcinogen benzo[a]pyrene (BaP), its 7,8-dihydrodiol derivative, and an anticancer drug ellipticine. Reaction mixtures contained besides the test compounds the CYP2S1 enzyme reconstituted with NADPH:CYP reductase (POR) in liposomes, and/or this CYP in the presence of cumene hydroperoxide or hydrogen peroxide. High performance liquid chromatography was employed for separation of BaP, BaP-7,8-dihydrodiol, and ellipticine metabolites. The results found in this study demonstrate that CYP2S1 in the presence of cumene hydroperoxide or hydrogen peroxide catalyzes oxidation of two of the test xenobiotics, a metabolite of BaP, BaP-7,8-dihydrodiol, and ellipticine. Whereas BaP-7,8,9,10-tetrahydrotetrol was formed as a product of BaP-7,8-dihydrodiol oxidation, ellipticine was oxidized to 12-hydroxyellipticine, 13-hydroxyellipticine, and the ellipticine N2-oxide.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa