Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(8): 1923-1940, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36800895

RESUMO

The low reactivity of ammonia (NH3) is the main barrier to applying neat NH3 as fuel in technical applications, such as internal combustion engines and gas turbines. Introducing combustion promoters as additives in NH3-based fuel can be a feasible solution. In this work, the oxidation of ammonia by adding different reactivity promoters, i.e., hydrogen (H2), methane (CH4), and methanol (CH3OH), was investigated in a jet-stirred reactor (JSR) at temperatures between 700 and 1200 K and at a pressure of 1 bar. The effect of ozone (O3) was also studied, starting from an extremely low temperature (450 K). Species mole fraction profiles as a function of the temperature were measured by molecular-beam mass spectrometry (MBMS). With the help of the promoters, NH3 consumption can be triggered at lower temperatures than in the neat NH3 case. CH3OH has the most prominent effect on enhancing the reactivity, followed by H2 and CH4. Furthermore, two-stage NH3 consumption was observed in NH3/CH3OH blends, whereas no such phenomenon was found by adding H2 or CH4. The mechanism constructed in this work can reasonably reproduce the promoting effect of the additives on NH3 oxidation. The cyanide chemistry is validated by the measurement of HCN and HNCO. The reaction CH2O + NH2 ⇄ HCO + NH3 is responsible for the underestimation of CH2O in NH3/CH4 fuel blends. The discrepancies observed in the modeling of NH3 fuel blends are mainly due to the deviations in the neat NH3 case. The total rate coefficient and the branching ratio of NH2 + HO2 are still controversial. The high branching fraction of the chain-propagating channel NH2 + HO2 ⇄ H2NO + OH improves the model performance under low-pressure JSR conditions for neat NH3 but overestimates the reactivity for NH3 fuel blends. Based on this mechanism, the reaction pathway and rate of production analyses were conducted. The HONO-related reaction routine was found to be activated uniquely by adding CH3OH, which enhances the reactivity most significantly. It was observed from the experiment that adding ozone to the oxidant can effectively initiate NH3 consumption at temperatures below 450 K but unexpectedly inhibit the NH3 consumption at temperatures higher than 900 K. The preliminary mechanism reveals that adding the elementary reactions between NH3-related species and O3 is effective for improving the model performance, but their rate coefficients have to be refined.

2.
Angew Chem Int Ed Engl ; 61(42): e202209168, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-35895936

RESUMO

A crucial chain-branching step in autoignition is the decomposition of ketohydroperoxides (KHP) to form an oxy radical and OH. Other pathways compete with chain-branching, such as "Korcek" dissociation of γ-KHP to a carbonyl and an acid. Here we characterize the formation of a γ-KHP and its decomposition to formic acid+acetone products from observations of n-butane oxidation in two complementary experiments. In jet-stirred reactor measurements, KHP is observed above 590 K. The KHP concentration decreases with increasing temperature, whereas formic acid and acetone products increase. Observation of characteristic isotopologs acetone-d3 and formic acid-d0 in the oxidation of CH3 CD2 CD2 CH3 is consistent with a Korcek mechanism. In laser-initiated oxidation experiments of n-butane, formic acid and acetone are produced on the timescale of KHP removal. Modelling the time-resolved production of formic acid provides an estimated upper limit of 2 s-1 for the rate coefficient of KHP decomposition to formic acid+acetone.

3.
Proc Natl Acad Sci U S A ; 114(50): 13102-13107, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29183984

RESUMO

Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500-600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound's molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.

4.
J Phys Chem A ; 123(38): 8274-8284, 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31483667

RESUMO

Keto-hydroperoxides (KHPs) are reactive, partially oxidized intermediates that play a central role in chain-branching reactions during the gas-phase low-temperature oxidation of hydrocarbons and oxygenated species. Although multiple isomeric forms of the KHP intermediate are possible in complex oxidation environments when multiple reactant radicals exist that contain nonequivalent O2 addition sites, isomer-resolved data of KHPs have not been reported. In this work, we provide partially isomer-resolved detection and quantification of the KHPs that form during the low-temperature oxidation of tetrahydrofuran (THF, cycl.-O-CH2CH2CH2CH2-). We describe how these short-lived KHPs were detected, identified, and quantified using integrated experimental and theoretical approaches. The experimental approaches were based on direct molecular-beam sampling from a jet-stirred reactor operated at near-atmospheric pressure and at temperatures between 500 and 700 K, followed by mass spectrometry with single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation, and the identification of fragmentation patterns. The interpretation of the experiments was guided by theoretical calculations of ionization thresholds, fragment appearance energies, and photoionization cross sections. On the basis of the experimentally observed and theoretically calculated ionization and fragment appearance energies, KHP isomers could be distinguished as originating from H-abstraction reactions from either the α-C adjacent to the O atom or the ß-C atoms. Temperature-dependent concentration profiles of the partially resolved isomeric KHP intermediates were determined in the range of 500-700 K, and the results indicate that the observed KHP isomers are formed overwhelmingly (∼99%) from the α-C THF radical. Comparisons of the partially isomer-resolved quantification of the KHPs to up-to-date kinetic modeling results reveal new opportunities for the development of a next-generation THF oxidation mechanism.

5.
Phys Chem Chem Phys ; 20(16): 10780-10795, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29392266

RESUMO

In this study, we experimentally investigate the high-temperature oxidation kinetics of n-pentane, 1-pentene and 2-methyl-2-butene (2M2B) in a combustion environment using flame-sampling molecular beam mass spectrometry. The selected C5 fuels are prototypes for linear and branched, saturated and unsaturated fuel components, featuring different C-C and C-H bond structures. It is shown that the formation tendency of species, such as polycyclic aromatic hydrocarbons (PAHs), yielded through mass growth reactions increases drastically in the sequence n-pentane < 1-pentene < 2M2B. This comparative study enables valuable insights into fuel-dependent reaction sequences of the gas-phase combustion mechanism that provide explanations for the observed difference in the PAH formation tendency. First, we investigate the fuel-structure-dependent formation of small hydrocarbon species that are yielded as intermediate species during the fuel decomposition, because these species are at the origin of the subsequent mass growth reaction pathways. Second, we review typical PAH formation reactions inspecting repetitive growth sequences in dependence of the molecular fuel structure. Third, we discuss how differences in the intermediate species pool influence the formation reactions of key aromatic ring species that are important for the PAH growth process underlying soot formation. As a main result it was found that for the fuels featuring a C[double bond, length as m-dash]C double bond, the chemistry of their allylic fuel radicals and their decomposition products strongly influences the combination reactions to the initially formed aromatic ring species and as a consequence, the PAH formation tendency.

6.
J Phys Chem A ; 120(40): 7890-7901, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27641828

RESUMO

This work provides new temperature-dependent mole fractions of elusive intermediates relevant to the low-temperature oxidation of dimethyl ether (DME). It extends the previous study of Moshammer et al. [ J. Phys. Chem. A 2015 , 119 , 7361 - 7374 ] in which a combination of a jet-stirred reactor and molecular beam mass spectrometry with single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation was used to identify (but not quantify) several highly oxygenated species. Here, temperature-dependent concentration profiles of 17 components were determined in the range of 450-1000 K and compared to up-to-date kinetic modeling results. Special emphasis is paid toward the validation and application of a theoretical method for predicting photoionization cross sections that are hard to obtain experimentally but essential to turn mass spectral data into mole fraction profiles. The presented approach enabled the quantification of the hydroperoxymethyl formate (HOOCH2OCH2O), which is a key intermediate in the low-temperature oxidation of DME. The quantification of this keto-hydroperoxide together with the temperature-dependent concentration profiles of other intermediates including H2O2, HCOOH, CH3OCHO, and CH3OOH reveals new opportunities for the development of a next-generation DME combustion chemistry mechanism.

7.
J Phys Chem A ; 119(28): 7361-74, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25695304

RESUMO

In this paper we report the detection and identification of the keto-hydroperoxide (hydroperoxymethyl formate, HPMF, HOOCH2OCHO) and other partially oxidized intermediate species arising from the low-temperature (540 K) oxidation of dimethyl ether (DME). These observations were made possible by coupling a jet-stirred reactor with molecular-beam sampling capabilities, operated near atmospheric pressure, to a reflectron time-of-flight mass spectrometer that employs single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation. On the basis of experimentally observed ionization thresholds and fragmentation appearance energies, interpreted with the aid of ab initio calculations, we have identified HPMF and its conceivable decomposition products HC(O)O(O)CH (formic acid anhydride), HC(O)OOH (performic acid), and HOC(O)OH (carbonic acid). Other intermediates that were detected and identified include HC(O)OCH3 (methyl formate), cycl-CH2-O-CH2-O- (1,3-dioxetane), CH3OOH (methyl hydroperoxide), HC(O)OH (formic acid), and H2O2 (hydrogen peroxide). We show that the theoretical characterization of multiple conformeric structures of some intermediates is required when interpreting the experimentally observed ionization thresholds, and a simple method is presented for estimating the importance of multiple conformers at the estimated temperature (∼100 K) of the present molecular beam. We also discuss possible formation pathways of the detected species: for example, supported by potential energy surface calculations, we show that performic acid may be a minor channel of the O2 + CH2OCH2OOH reaction, resulting from the decomposition of the HOOCH2OCHOOH intermediate, which predominantly leads to the HPMF.

8.
Phys Chem Chem Phys ; 16(41): 22791-804, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25237782

RESUMO

Complex reactive processes in the gas phase often proceed via numerous reaction steps and intermediate species that must be identified and quantified to develop an understanding of the reaction pathways and establish suitable reaction mechanisms. Here, photoelectron-photoion coincidence (PEPICO) spectroscopy has been applied to analyse combustion intermediates present in a premixed fuel-rich (ϕ = 1.7) ethene-oxygen flame diluted with 25% argon, burning at a reduced pressure of 40 mbar. For the first time, multiplexing fixed-photon-energy PEPICO measurements were demonstrated in a chemically complex reactive system such as a flame in comparison with the scanning "threshold" TPEPICO approach used in recent pioneering combustion investigations. The technique presented here is capable of detecting and identifying multiple species by their cations' vibronic fingerprints, including radicals and pairs or triplets of isomers, from a single time-efficient measurement at a selected fixed photon energy. Vibrational structures for these species have been obtained in very good agreement with scanning-mode threshold photoelectron spectra taken under the same conditions. From such spectra, the temperature in the ionisation volume was determined. Exemplary analysis of species profiles and mole fraction ratios for isomers shows favourable agreement with results obtained by more common electron ionisation and photoionisation mass spectrometry experiments. It is expected that the multiplexing fixed-photon-energy PEPICO technique can contribute effectively to the analysis of chemical reactivity and kinetics in and beyond combustion.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa