RESUMO
Connecting chemical structural representations with meaningful categories and semantic annotations representing existing knowledge enables data-driven digital discovery from chemistry data. Ontologies are semantic annotation resources that provide definitions and a classification hierarchy for a domain. They are widely used throughout the life sciences. ChEBI is a large-scale ontology for the domain of biologically interesting chemistry that connects representations of chemical structures with meaningful chemical and biological categories. Classifying novel molecular structures into ontologies such as ChEBI has been a longstanding objective for data scientific methods, but the approaches that have been developed to date are limited in several ways: they are not able to expand as the ontology expands without manual intervention, and they are not able to learn from continuously expanding data. We have developed an approach for automated classification of chemicals in the ChEBI ontology based on a neuro-symbolic AI technique that harnesses the ontology itself to create the learning system. We provide this system as a publicly available tool, Chebifier, and as an API, ChEB-AI. We here evaluate our approach and show how it constitutes an advance towards a continuously learning semantic system for chemical knowledge discovery.
RESUMO
Chemical data is increasingly openly available in databases such as PubChem, which contains approximately 110 million compound entries as of February 2021. With the availability of data at such scale, the burden has shifted to organisation, analysis and interpretation. Chemical ontologies provide structured classifications of chemical entities that can be used for navigation and filtering of the large chemical space. ChEBI is a prominent example of a chemical ontology, widely used in life science contexts. However, ChEBI is manually maintained and as such cannot easily scale to the full scope of public chemical data. There is a need for tools that are able to automatically classify chemical data into chemical ontologies, which can be framed as a hierarchical multi-class classification problem. In this paper we evaluate machine learning approaches for this task, comparing different learning frameworks including logistic regression, decision trees and long short-term memory artificial neural networks, and different encoding approaches for the chemical structures, including cheminformatics fingerprints and character-based encoding from chemical line notation representations. We find that classical learning approaches such as logistic regression perform well with sets of relatively specific, disjoint chemical classes, while the neural network is able to handle larger sets of overlapping classes but needs more examples per class to learn from, and is not able to make a class prediction for every molecule. Future work will explore hybrid and ensemble approaches, as well as alternative network architectures including neuro-symbolic approaches.