Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 34(8): 1429-1438, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37486977

RESUMO

Peptide nucleic acids and their conjugates to peptides can self-assemble and generate complex architectures. In this work, we explored the self-assembly of PNA dimers conjugated to the dipeptide WW. Our studies suggest that the indole ring of tryptophan promotes aggregation of the conjugates. The onset of fluorescence is observed upon self-assembly. The structure of self-assembled WWgc is concentration-dependent, being spherical at low concentrations and fibrous at high concentrations. As suggested by molecular modeling studies, fibers are stabilized by stacking interactions between tryptophans and Watson-Crick hydrogen bonds between nucleobases.


Assuntos
Ácidos Nucleicos Peptídicos , Triptofano , Ácidos Nucleicos Peptídicos/química , Dipeptídeos/química , Peptídeos , Modelos Moleculares
2.
Chemistry ; 28(37): e202200693, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35474351

RESUMO

Self-assembly of biomolecules such as peptides, nucleic acids or their analogues affords supramolecular objects, exhibiting structures and physical properties dependent on the amino-acid or nucleobase composition. Conjugation of the peptide diphenylalanine (FF) to peptide nucleic acids triggers formation of self-assembled structures, mainly stabilized by interactions between FF. In this work we report formation of homogeneous chiral fibers upon self-assembly of the hybrid composed of the tetraphenylalanine peptide (4F) conjugated to the PNA dimer adenine-thymine (at). In this case nucleobases seem to play a key role in determining the morphology and chirality of the fibers. When the PNA "at" is replaced by guanine-cytosine dimer "gc", disordered structures are observed. Spectroscopic characterization of the self-assembled hybrids, along with AFM and SEM studies is reported. Finally, a structural model consistent with the experimental evidence has also been obtained, showing how the building blocks of 4Fat arrange to give helical fibers.


Assuntos
Nanoestruturas , Ácidos Nucleicos Peptídicos , Nanoestruturas/química , Ácidos Nucleicos Peptídicos/química , Peptídeos/química , Fenilalanina/química , Polímeros , Timina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa