Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Cell ; 185(5): 896-915.e19, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35180381

RESUMO

The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Imunidade nas Mucosas , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Citocinas/sangue , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Vetores Genéticos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Neutralização , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Nucleocapsídeo/metabolismo , Pan troglodytes , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
2.
Nat Immunol ; 17(1): 65-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26595887

RESUMO

Viral respiratory tract infections are the main causative agents of the onset of infection-induced asthma and asthma exacerbations that remain mechanistically unexplained. Here we found that deficiency in signaling via type I interferon receptor led to deregulated activation of group 2 innate lymphoid cells (ILC2 cells) and infection-associated type 2 immunopathology. Type I interferons directly and negatively regulated mouse and human ILC2 cells in a manner dependent on the transcriptional activator ISGF3 that led to altered cytokine production, cell proliferation and increased cell death. In addition, interferon-γ (IFN-γ) and interleukin 27 (IL-27) altered ILC2 function dependent on the transcription factor STAT1. These results demonstrate that type I and type II interferons, together with IL-27, regulate ILC2 cells to restrict type 2 immunopathology.


Assuntos
Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Linfócitos/imunologia , Infecções Respiratórias/imunologia , Animais , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Infecções Respiratórias/patologia
3.
Nucleic Acids Res ; 49(13): 7267-7279, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34232998

RESUMO

We performed in vitro selection experiments to identify DNA aptamers for the S1 subunit of the SARS-CoV-2 spike protein (S1 protein). Using a pool of pre-structured random DNA sequences, we obtained over 100 candidate aptamers after 13 cycles of enrichment under progressively more stringent selection pressure. The top 10 sequences all exhibited strong binding to the S1 protein. Two aptamers, named MSA1 (Kd = 1.8 nM) and MSA5 (Kd = 2.7 nM), were assessed for binding to the heat-treated S1 protein, untreated S1 protein spiked into 50% human saliva and the trimeric spike protein of both the wildtype and the B.1.1.7 variant, demonstrating comparable affinities in all cases. MSA1 and MSA5 also recognized the pseudotyped lentivirus of SARS-CoV-2 with respective Kd values of 22.7 pM and 11.8 pM. Secondary structure prediction and sequence truncation experiments revealed that both MSA1 and MSA5 adopted a hairpin structure, which was the motif pre-designed into the original library. A colorimetric sandwich assay was developed using MSA1 as both the recognition element and detection element, which was capable of detecting the pseudotyped lentivirus in 50% saliva with a limit of detection of 400 fM, confirming the potential of these aptamers as diagnostic tools for COVID-19 detection.


Assuntos
Aptâmeros de Nucleotídeos , COVID-19/virologia , Biblioteca Gênica , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Pareamento de Bases , Sequência de Bases , COVID-19/diagnóstico , Colorimetria/métodos , Humanos , Conformação de Ácido Nucleico , Técnica de Seleção de Aptâmeros
4.
J Immunol ; 200(2): 450-458, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29311387

RESUMO

Oncolytic viruses (OVs) are multimodal cancer therapeutics, with one of their dominant mechanisms being in situ vaccination. There is a growing consensus that optimal cancer therapies should generate robust tumor-specific immune responses. Immunogenic cell death (ICD) is a paradigm of cellular demise culminating in the spatiotemporal release of danger-associated molecular patterns that induce potent anticancer immunity. Alongside traditional ICD inducers like anthracycline chemotherapeutics and radiation, OVs have emerged as novel members of this class of therapeutics. OVs replicate in cancers and release tumor Ags, which are perceived as dangerous because of simultaneous expression of pathogen-associated molecular patterns that activate APCs. Therefore, OVs provide the target Ags and danger signals required to induce adaptive immune responses. This review discusses why OVs are attractive candidates for generating ICD, biological barriers limiting their success in the clinic, and groundbreaking strategies to potentiate ICD and antitumor immunity with rationally designed OV-based combination therapies.


Assuntos
Morte Celular/imunologia , Sistema Imunitário/imunologia , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/imunologia , Alarminas/genética , Alarminas/metabolismo , Animais , Terapia Combinada/métodos , Terapia Genética/métodos , Humanos , Sistema Imunitário/metabolismo , Imunoterapia/métodos , Neoplasias/genética , Neoplasias/metabolismo , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética
5.
Cytokine ; 124: 154439, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-29908921

RESUMO

Despite effective new treatments for Hepatitis C virus (HCV) infection, development of drug resistance, safety concerns and cost are remaining challenges. More importantly, there is no vaccine available against hepatitis C infection. Recent data suggest that there is a strong correlation between spontaneous HCV clearance and human NK cell function, particularly IFN-γ production. Further, IL-15 has innate antiviral activity and is also one of the main factors that activates NK cells to produce IFN-γ. To examine whether IL-15 and IFN-γ have direct antiviral activity against HCV, Huh7.5 cells were treated with either IFN-γ or IL-15 prior to HCV infection. Our data demonstrate that IFN-γ and IL-15 block HCV replication in vitro. Additionally, we show that IL-15 and IFN-γ do not induce anti-HCV effects through the type I interferon signaling pathway or nitric oxide (NO) production. Instead, IL-15 and IFN-γ provide protection against HCV via the ERK pathway. Treatment of Huh7.5 cells with a MEK/ERK inhibitor abrogated the anti-HCV effects of IL-15 and IFN-γ and overexpression of ERK1 prevented HCV replication compared to control transfection. Our in vitro data support the hypothesis that early production of IL-15 and activation of NK cells in the liver lead to control of HCV replication.


Assuntos
Hepacivirus/fisiologia , Interferon gama/farmacologia , Interleucina-15/farmacologia , Células Matadoras Naturais/imunologia , Fígado/imunologia , Fígado/virologia , Sistema de Sinalização das MAP Quinases/imunologia , Replicação Viral , Antivirais/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Hepacivirus/efeitos dos fármacos , Hepacivirus/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Interferon Tipo I/metabolismo , Interferon Tipo I/farmacologia , Interferon-alfa/farmacologia , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Óxido Nítrico/farmacologia , Regulação para Cima , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
6.
Immunol Cell Biol ; 96(9): 922-934, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29617041

RESUMO

Nucleic acids are potential pathogen-associated or danger-associated molecular patterns that modulate immune responses and the development of autoimmune disorders. Class A scavenger receptors (SR-As) are a diverse group of pattern recognition receptors that recognize a variety of polyanionic ligands including nucleic acids. While SR-As are important for the recognition and internalization of extracellular dsRNA, little is known about extracellular DNA, despite its association with chronic infections and autoimmune disorders. In this study, we investigated the specificity of and requirement for SR-As in binding and internalizing different species, sequences and lengths of nucleic acids. We purified recombinant coiled-coil/collagenous and scavenger receptor cysteine-rich (SRCR) domains that have been implicated as potential ligand-binding domains. We detected a direct interaction of RNA and DNA species with the coiled-coil/collagenous domain, but not the SRCR domain. Despite the presence of additional surface receptors that bind nucleic acids, SR-As were found to be sufficient for nucleic acid binding and uptake in A549 human lung epithelial cells. Moreover, these findings suggest that the coiled-coil/collagenous domain of SR-As is sufficient to bind nucleic acids independent of species, sequence or length.


Assuntos
Ácidos Nucleicos/metabolismo , RNA de Cadeia Dupla/metabolismo , Receptores Depuradores Classe A/metabolismo , Internalização do Vírus , Células A549 , Sequência de Aminoácidos , Humanos , Ácidos Nucleicos/imunologia , Receptores de Reconhecimento de Padrão , Receptores Depuradores Classe A/imunologia
7.
J Immunol ; 195(8): 3858-65, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26363049

RESUMO

dsRNA is a potent trigger of innate immune signaling, eliciting effects within virally infected cells and after release from dying cells. Given its inherent stability, extracellular dsRNA induces both local and systemic effects. Although the class A scavenger receptors (SR-As) mediate dsRNA entry, it is unknown whether they contribute to signaling beyond ligand internalization. In this study, we investigated whether SR-As contribute to innate immune signaling independent of the classic TLR and retinoic acid-inducible gene-I-like receptor (RLR) pathways. We generated a stable A549 human epithelial cell line with inducible expression of the hepatitis C virus protease NS3/4A, which efficiently cleaves TRIF and IFN-ß promoter stimulator 1, adaptors for TLR3 and the RLRs, respectively. Cells expressing NS3/4A and TLR3/MyD88/IFN-ß promoter stimulator 1(-/-) mouse embryonic fibroblasts completely lacked antiviral activity to extracellular dsRNA relative to control cells, suggesting that SR-As do not possess signaling capacity independent of TLR3 or the RLRs. Previous studies implicated PI3K signaling in SR-A-mediated activities and in downstream production of type I IFN. We found that SR-A-mediated dsRNA internalization occurs independent of PI3K activation, whereas downstream signaling leading to IFN production was partially dependent on PI3K activity. Overall, these findings suggest that SR-A-mediated dsRNA internalization is independent of innate antiviral signaling.


Assuntos
Hepacivirus/imunologia , Imunidade Inata , Fosfatidilinositol 3-Quinases/imunologia , RNA de Cadeia Dupla/imunologia , RNA Viral/imunologia , Receptores Depuradores Classe A/imunologia , Transdução de Sinais/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Fosfatidilinositol 3-Quinases/genética , RNA de Cadeia Dupla/genética , Receptores Depuradores Classe A/genética , Transdução de Sinais/genética , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Proteínas não Estruturais Virais/imunologia
8.
J Immunol ; 195(10): 4650-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26459352

RESUMO

Type I IFNs (IFN-I) are cytokines that can mediate both immune suppression and activation. Dendritic cells (DC) are significant producers of IFN-I, and depending on the context (nature of Ag, duration of exposure to Ag), DC-derived IFN-I can have varying effects on CD8(+) T cell responses. In this study, we report that in the context of a CD8(+) T cell response to a self-Ag, DC-intrinsic expression of IFN regulatory factor 3 is required to induce optimal proliferation and migration of autoreactive CD8(+) T cells, ultimately determining their ability to infiltrate a target tissue (pancreas), and the development of glucose intolerance in rat insulin promoter-glycoprotein (RIP-GP) mice. Moreover, we show that signals through the lymphotoxin-ß receptor (LTßR) in DC are also required for the proliferation of autoreactive CD8(+) T cells, the upregulation of VLA4/LFA1 on activated CD8(+) T cells, and their subsequent infiltration into the pancreas both in vitro and in vivo. Importantly, the defects in autoreactive CD8(+) T cell proliferation, accumulation of CD8(+) T cells in the pancreas, and consequent glucose intolerance observed in the context of priming by LTßR(-/-) DC could be rescued by exogenous addition of IFN-I. Collectively, our data demonstrate that the LTßR/IFN-I axis is essential for programming of CD8(+) T cells to mediate immunopathology in a self-tissue. A further understanding of the IFN-I/LTßR axis will provide valuable therapeutic insights for treatment of CD8(+) T cell-mediated autoimmune diseases.


Assuntos
Autoantígenos/imunologia , Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Linfócitos T CD8-Positivos/imunologia , Interferon Tipo I/imunologia , Receptor beta de Linfotoxina/imunologia , Animais , Diferenciação Celular/imunologia , Movimento Celular/imunologia , Proliferação de Células , Células Cultivadas , Células Dendríticas/imunologia , Intolerância à Glucose/imunologia , Inflamação/imunologia , Fator Regulador 3 de Interferon/imunologia , Ativação Linfocitária/imunologia , Antígeno-1 Associado à Função Linfocitária/biossíntese , Receptor beta de Linfotoxina/genética , Linfotoxina-beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/citologia , Pâncreas/imunologia
9.
Proc Natl Acad Sci U S A ; 111(31): E3206-13, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049377

RESUMO

Myeloid cells play a critical role in perpetuating inflammation during various chronic diseases. Recently the death of macrophages through programmed necrosis (necroptosis) has emerged as an important mechanism in inflammation and pathology. We evaluated the mechanisms that lead to the induction of necrotic cell death in macrophages. Our results indicate that type I IFN (IFN-I) signaling is a predominant mechanism of necroptosis, because macrophages deficient in IFN-α receptor type I (IFNAR1) are highly resistant to necroptosis after stimulation with LPS, polyinosinic-polycytidylic acid, TNF-α, or IFN-ß in the presence of caspase inhibitors. IFN-I-induced necroptosis occurred through both mechanisms dependent on and independent of Toll/IL-1 receptor domain-containing adaptor inducing IFN-ß (TRIF) and led to persistent phosphorylation of receptor-interacting protein 3 (Rip3) kinase, which resulted in potent necroptosis. Although various IFN-regulatory factors (IRFs) facilitated the induction of necroptosis in response to IFN-ß, IRF-9-STAT1- or -STAT2-deficient macrophages were highly resistant to necroptosis. Our results indicate that IFN-ß-induced necroptosis of macrophages proceeds through tonic IFN-stimulated gene factor 3 (ISGF3) signaling, which leads to persistent expression of STAT1, STAT2, and IRF9. Induction of IFNAR1/Rip3-dependent necroptosis also resulted in potent inflammatory pathology in vivo. These results reveal how IFN-I mediates acute inflammation through macrophage necroptosis.


Assuntos
Apoptose , Interferon Tipo I/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inflamação , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Necrose , Oligopeptídeos/farmacologia , Poli I-C/farmacologia , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
10.
J Virol ; 89(19): 9841-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26178983

RESUMO

UNLABELLED: It has recently been proposed that the herpes simplex virus (HSV) protein ICP0 has cytoplasmic roles in blocking antiviral signaling and in promoting viral replication in addition to its well-known proteasome-dependent functions in the nucleus. However, the mechanisms through which it produces these effects remain unclear. While investigating this further, we identified a novel cytoplasmic interaction between ICP0 and the poorly characterized cellular protein WDR11. During an HSV infection, WDR11 undergoes a dramatic change in localization at late times in the viral replication cycle, moving from defined perinuclear structures to a dispersed cytoplasmic distribution. While this relocation was not observed during infection with viruses other than HSV-1 and correlated with efficient HSV-1 replication, the redistribution was found to occur independently of ICP0 expression, instead requiring viral late gene expression. We demonstrate for the first time that WDR11 is localized to the trans-Golgi network (TGN), where it interacts specifically with some, but not all, HSV virion components, in addition to ICP0. Knockdown of WDR11 in cultured human cells resulted in a modest but consistent decrease in yields of both wild-type and ICP0-null viruses, in the supernatant and cell-associated fractions, without affecting viral gene expression. Although further study is required, we propose that WDR11 participates in viral assembly and/or secondary envelopment. IMPORTANCE: While the TGN has been proposed to be the major site of HSV-1 secondary envelopment, this process is incompletely understood, and in particular, the role of cellular TGN components in this pathway is unknown. Additionally, little is known about the cellular functions of WDR11, although the disruption of this protein has been implicated in multiple human diseases. Therefore, our finding that WDR11 is a TGN-resident protein that interacts with specific viral proteins to enhance viral yields improves both our understanding of basic cellular biology as well as how this protein is co-opted by HSV.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Simplexvirus/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Rede trans-Golgi/metabolismo , Western Blotting , Linhagem Celular Tumoral , Fibroblastos , Humanos , Imunoprecipitação , Microscopia de Fluorescência , RNA Interferente Pequeno/genética , Ensaio de Placa Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa