Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Med Sci Sports Exerc ; 38(7): 1277-81, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16826024

RESUMO

PURPOSE: The purpose of this study was to determine the interaction of age and habitual physical activity on recovery time of muscle oxygenation following maximal cycling exercise (CycEXmax). METHODS: Twelve sedentary middle-aged (50+/-6), 13 sedentary elderly (66+/-3), 13 active middle-aged (53+/-5), and 20 active elderly (67+/-5) women participated in this study. We evaluated the peak pulmonary oxygen uptake (VO2peak) during CycEXmax and the half-recovery time of muscle oxygenation (T1/2reoxy time) using near-infrared spectroscopy at the vastus lateralis (VL) during the recovery phase after CycEXmax. RESULTS: T1/2reoxy time was significantly greater in the elderly subjects than in the middle-aged subjects in both sedentary (P<0.05) and active groups (P<0.01). T1/2reoxy time of the active group was lower (P<0.01) than that of the sedentary group regardless of age. Age was significantly correlated to T1/2reoxy time in both sedentary and active groups (in both sedentary and active groups: P<0.01). The slope of T1/2reoxy time against age in the sedentary group was significantly greater (VL: P<0.05) than that of the active group. VO2peak showed significant inverse correlation with T1/2reoxy time at the VL in both sedentary and active groups. The slope of VO2peak against T1/2reoxy time showed no significant differences between middle-aged and elderly subjects. CONCLUSION: The results of this study suggest that T1/2reoxy time was prolonged with aging, regardless of habitual physical activity levels. However, habitual physical activity may prevent the age-related prolongation in T1/2reoxy time after CycEXmax. VO2peak appears to be one of the major factors determining T1/2reoxy time, not age.


Assuntos
Ciclismo/fisiologia , Músculo Esquelético/fisiologia , Consumo de Oxigênio/fisiologia , Idoso , Estudos Transversais , Teste de Esforço , Feminino , Humanos , Japão , Pessoa de Meia-Idade , Monitorização Fisiológica/métodos , Espectroscopia de Luz Próxima ao Infravermelho
2.
Med Sci Sports Exerc ; 35(10): 1697-702, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14523307

RESUMO

PURPOSE: Although it is well known that immobilization causes muscle atrophy, most immobilization models have examined lower limbs, and little is known about the forearm. The purpose of this study was to determine whether forearm immobilization produces changes in muscle morphology and function. METHODS: Six healthy males (age: 21.5 +/- 1.4, mean +/- SD) participated in this study. The nondominant arm was immobilized with a cast (CAST) for 21 d, and the dominant arm was measured as the control (CONT). The forearm cross-sectional area (CSA) and circumference were measured as muscle morphology. Maximum grip strength, forearm muscle oxidative capacity, and dynamic grip endurance were measured as muscle function. Magnetic resonance (MR) imaging was used to measure CSA, and 31phosphorus MR spectroscopy was used to measure time constant (Tc) for phosphocreatine (PCr) recovery after submaximal exercise (PCr-Tc). Grip endurance was expressed by the number of handgrip contractions at 30% maximum grip strength load. All measurements were taken before and after the immobilization. RESULTS: After the 21-d forearm immobilization, no changes were seen for each measurement in CONT. CSA and the circumference showed no significant changes in CAST. However, maximum grip strength decreased by 18% (P < 0.05), PCr-Tc was prolonged by 45% (P < 0.05), and the grip endurance at the absolute load was reduced by 19% (P < 0.05) for CAST. CONCLUSION: In this model, 21-d forearm immobilization caused no significant changes in forearm muscle morphology, but the muscle function showed remarkable deterioration ranging from 18 to 45%.


Assuntos
Imobilização , Músculos/fisiopatologia , Adulto , Moldes Cirúrgicos , Antebraço , Força da Mão , Humanos , Masculino , Atrofia Muscular , Oxirredução , Resistência Física
3.
Dyn Med ; 3(1): 2, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14764213

RESUMO

BACKGROUND: In this research inactivity was simulated by immobilizing the forearm region in a plaster cast. Changes in skeletal muscle oxidative function were measured using near-infrared spectroscopy (NIRS), and the preventative effect of the training protocol on deterioration of skeletal muscle and the clinical utility of NIRS were examined. METHODS: Fourteen healthy adult men underwent immobilization of the forearm of the non-dominant arm by plaster cast for 21 days. Eight healthy adult subjects were designated as the immobilization group (IMM) and six were designated as the immobilization + training group (IMM+TRN). Grip strength, forearm circumference and dynamic handgrip exercise endurance were measured before and after the 21-day immobilization period. Using NIRS, changes in oxidative function of skeletal muscles were also evaluated. Muscle oxygen consumption recovery was recorded after the completion of 60 seconds of 40% maximum voluntary contraction (MVC) dynamic handgrip exercise 1 repetition per 4 seconds and the recovery time constant (TcVO2mus) was calculated. RESULTS: TcVO2mus for the IMM was 59.7 +/- 5.5 seconds (average +/- standard error) before immobilization and lengthened significantly to 70.4 +/- 5.4 seconds after immobilization (p < 0.05). For the IMM+TRN, TcVO2mus was 78.3 +/- 6.2 seconds before immobilization and training and shortened significantly to 63.1 +/- 5.6 seconds after immobilization and training (p < 0.05). CONCLUSIONS: The training program used in this experiment was effective in preventing declines in muscle oxidative function and endurance due to immobilization. The experimental results suggest that non-invasive monitoring of skeletal muscle function by NIRS would be possible in a clinical setting.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa