Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Theor Appl Genet ; 137(6): 135, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761248

RESUMO

KEY MESSAGE: Sustainable winter production in lettuce requires freezing tolerant varieties. This study identified a wild-type allele of LsCBF7 that could contribute to freezing tolerance improvement in lettuce. Lettuce is one of the most consumed vegetables globally. While ideally grown in 13-21 °C, its cultivation extends into winter in milder climates. However, occasional freezing temperatures can significantly reduce yields. Therefore, the development of freezing-tolerant lettuce varieties has become a long-term goal of lettuce breeding programs. Despite its significance, our understanding of freezing tolerance in lettuce remains limited. Plants have evolved a coping mechanism against freezing, known as cold acclimation, whereby they can increase freezing tolerance when pre-exposed to low nonfreezing temperatures. The CBF pathway is well-known for its central role in cold acclimation. Previously, we identified 14 CBF genes in lettuce and discovered that one of them, LsCBF7, had a loss-of-function mutation. In this study, we uncovered that accessions from colder regions carried the wild-type allele of LsCBF7 and this allele likely contributed to increased freezing tolerance, with 14% of the lettuce population carrying this allele. Interestingly, in wild lettuce (L. serriola) that is considered a progenitor of cultivated lettuce, this wild-type allele was much more common, with a frequency of 90%. This finding suggests that this wild-type allele may have undergone negative selection during the domestication or breeding of lettuce. Our data strongly indicate that this allele could be linked to early bolting, an undesirable trait in lettuce, which may have driven the negative selection. While this wild-type allele shows promise for improving freezing tolerance in lettuce, it is crucial to decouple it from the early bolting trait to fully harness its potential in lettuce breeding.


Assuntos
Aclimatação , Alelos , Domesticação , Congelamento , Lactuca , Melhoramento Vegetal , Lactuca/genética , Lactuca/crescimento & desenvolvimento , Lactuca/fisiologia , Aclimatação/genética , Seleção Genética , Proteínas de Plantas/genética , Fenótipo
2.
Plant Dis ; : PDIS06231225RE, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37840290

RESUMO

Spinach downy mildew, caused by the obligate oomycete pathogen Peronospora effusa, is a worldwide constraint on spinach production. The role of airborne sporangia in the disease cycle of P. effusa is well established, but the role of the sexual oospores in the epidemiology of P. effusa is less clear and has been a major challenge to examine experimentally. To evaluate seed transmission of spinach downy mildew via oospores in this study, isolated glass chambers were employed in two independent experiments to grow out oospore-infested spinach seed and noninfested seeds mixed with oospore-infested crop debris. Downy mildew diseased spinach plants were observed 37 and 34 days after planting in the two isolator experiments, respectively, in the chambers that contained one of two oospore-infested seed lots or seeds coated with oospore-infested leaves. Spinach plants in isolated glass chambers initiated from seeds without oospores did not show downy mildew symptoms. Similar findings were obtained using the same seed lot samples in a third experiment conducted in a growth chamber. In direct grow out tests to examine oospore infection on seedlings performed in a containment greenhouse with oospore-infested seed of two different cultivars, characteristic Peronospora sporangiophores were observed growing from a seedling of each cultivar. The frequency of seedlings developing symptoms from 82 of these oospore-infested seed indicated that approximately 2.4% of seedlings from infested seed developed symptoms, and 0.55% of seedlings from total seeds assayed developed symptoms. The results provide evidence that oospores can serve as a source of inoculum for downy mildew and provide further evidence of direct seed transmission of the downy mildew pathogen to seedlings in spinach via seedborne oospores.

3.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894961

RESUMO

Cowpea (Vigna unguiculata (L.) Walp.) is a diploid legume crop used for human consumption, feed for livestock, and cover crops. Earlier reports have shown that salinity has been a growing threat to cowpea cultivation. The objectives of this study were to conduct a genome-wide association study (GWAS) to identify SNP markers and to investigate candidate genes for salt tolerance in cowpea. A total of 331 cowpea genotypes were evaluated for salt tolerance by supplying a solution of 200 mM NaCl in our previous work. The cowpea panel was genotyped using a whole genome resequencing approach, generating 14,465,516 SNPs. Moreover, 5,884,299 SNPs were used after SNP filtering. GWAS was conducted on a total of 296 cowpea genotypes that have high-quality SNPs. BLINK was used for conducting GWAS. Results showed (1) a strong GWAS peak on an 890-bk region of chromosome 2 for leaf SPAD chlorophyll under salt stress in cowpea and harboring a significant cluster of nicotinamide adenine dinucleotide (NAD) dependent epimerase/dehydratase genes such as Vigun02g128900.1, Vigun02g129000.1, Vigun02g129100.1, Vigun02g129200.1, and Vigun02g129500.1; (2) two GWAS peaks associated with relative tolerance index for chlorophyll were identified on chromosomes 1 and 2. The peak on chromosome 1 was defined by a cluster of 10 significant SNPs mapped on a 5 kb region and was located in the vicinity of Vigun01g086000.1, encoding for a GATA transcription factor. The GWAS peak on chromosome 2 was defined by a cluster of 53 significant SNPs and mapped on a 68 bk region of chromosome 2, and (3) the highest GWAS peak was identified on chromosome 3, and this locus was associated with leaf score injury. This peak was within the structure of a potassium channel gene (Vigun03g144700.1). To the best of our knowledge, this is one the earliest reports on the salt tolerance study of cowpea using whole genome resequencing data.


Assuntos
Vigna , Humanos , Vigna/genética , Plântula/genética , Estudo de Associação Genômica Ampla , Tolerância ao Sal/genética , Clorofila
4.
Plant Dis ; 106(10): 2583-2590, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35285269

RESUMO

Spring mix is a popular packaged salad that contains lettuce (Lactuca sativa L.) as one of its main ingredients. Plants for baby leaf lettuce (BLL) production are grown at very high densities, which enhances the occurrence of bacterial leaf spot (BLS) caused by Xanthomonas hortorum pv. vitians (Xhv), a disease that can make the crop unmarketable. The market demands disease-free, high-quality BLL all year round. Growing highly BLS-resistant cultivars will reduce loss of yield and quality, thus minimizing economic detriment to lettuce and spring mix growers. The research objectives were to identify lettuce accessions resistant to BLS and associated quantitative trait loci (QTL). A total of 495 lettuce accessions were screened with six isolates (BS0347, BS2861, BS3127, L7, L44, and Sc8B) of Xhv. Accessions showing overall high-level resistance to all tested Xhv isolates were 'Bunte Forellen', PI 226514, 'La Brillante', ARM09-161-10-1-4, 'Grenadier', 'Bella', PI 491210, 'Delight', and 'Romana Verde del Mercado'. Genome-wide association studies of BLS resistance by mixed linear model analyses identified significant QTLs on four lettuce chromosomes (2, 4, 6, and 8). The most significant QTL was on Chromosome 8 (P = 1.42 × 10-7), which explained 6.7% of total phenotypic variation for the disease severity. Accessions with a high level of resistance detected in this study are valuable resources for lettuce germplasm improvement. Molecular markers closely linked to QTLs can be considered for marker-assisted selection to develop new BLL lettuce cultivars with resistance to multiple races of Xhv.


Assuntos
Lactuca , Locos de Características Quantitativas , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Lactuca/genética , Lactuca/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Xanthomonas
5.
BMC Genomics ; 22(1): 478, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174825

RESUMO

BACKGROUND: Downy mildew, the most devastating disease of spinach (Spinacia oleracea L.), is caused by the oomycete Peronospora effusa [=P. farinosa f. sp. spinaciae]. The P. effusa shows race specificities to the resistant host and comprises 19 reported races and many novel isolates. Sixteen new P. effusa races were identified during the past three decades, and the new pathogen races are continually overcoming the genetic resistances used in commercial cultivars. A spinach breeding population derived from the cross between cultivars Whale and Lazio was inoculated with P. effusa race 16 in an environment-controlled facility; disease response was recorded and genotyped using genotyping by sequencing (GBS). The main objective of this study was to identify resistance-associated single nucleotide polymorphism (SNP) markers from the cultivar Whale against the P. effusa race 16. RESULTS: Association analysis conducted using GBS markers identified six significant SNPs (S3_658,306, S3_692697, S3_1050601, S3_1227787, S3_1227802, S3_1231197). The downy mildew resistance locus from cultivar Whale was mapped to a 0.57 Mb region on chromosome 3, including four disease resistance candidate genes (Spo12736, Spo12784, Spo12908, and Spo12821) within 2.69-11.28 Kb of the peak SNP. CONCLUSIONS: Genomewide association analysis approach was used to map the P. effusa race 16 resistance loci and identify associated SNP markers and the candidate genes. The results from this study could be valuable in understanding the genetic basis of downy mildew resistance, and the SNP marker will be useful in spinach breeding to select resistant lines.


Assuntos
Oomicetos , Peronospora , Resistência à Doença , Estudos de Associação Genética , Peronospora/genética , Melhoramento Vegetal , Doenças das Plantas , Spinacia oleracea/genética
6.
Proteomics ; 20(19-20): e1900420, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32672417

RESUMO

Lettuce (Lactuca sativa), cultivated mainly for its edible leaves and stems, is an important vegetable crop worldwide. Genomes of cultivated lettuce (L. sativa cv. Salinas) and its wild relative L. serriola accession US96UC23 are sequenced, but a clear understanding of the genetic basis for divergence in phenotypes of the two species is lacking. Tandem mass tag (TMT) based mass spectrometry is used to quantitatively compare protein levels between these two species. Four-day old seedlings is transplanted into 500 mL pots filled with soil. Plants are grown for 8 weeks under 250 µmol m-2 sec-1 continuous light, 20 °C and relative humidity between 50-70%. Leaf discs (1 cm diameter) from three individuals per biological replicate are analyzed. A total of 3000 proteins are identified, of which the levels of 650 are significantly different between 'Salinas' and US96UC23. Pathway analysis indicated a higher flux of carbon in 'Salinas' than US96UC23. Many essential metabolic pathways such as tetrapyrrole metabolism and fatty acid biosynthesis are upregulated in 'Salinas' compared with US96UC23. This study provides a reference proteome for researchers interested in understanding lettuce biology and improving traits for cultivation.


Assuntos
Lactuca , Proteômica , Humanos , Lactuca/fisiologia , Redes e Vias Metabólicas , Fenótipo , Folhas de Planta
7.
Theor Appl Genet ; 133(6): 1947-1966, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32123958

RESUMO

KEY MESSAGE: Two major QTL, one for shelf life that corresponds to qSL4 and one, qDEV7, for developmental rate, were identified. Associated markers will be useful in breeding for improved fresh-cut lettuce. Fresh-cut lettuce in packaged salad can have short shelf life, and visible deterioration may start within a week after processing. Yield and developmental rate are an important aspect of lettuce production. Genetic diversity and genome-wide association studies (GWAS) were performed on 493 accessions with the genotypic data of 4615 high-quality single nucleotide polymorphism markers. Population structure (Q), principal component (PC), and phylogenetic analyses displayed genetic relationships associated with lettuce types and geographic distribution. Data for shelf life, yield, developmental rate, and their stability indices were used for statistical analysis, and GWAS was performed by general and mixed linear models. The genetic relationship among the individuals was incorporated into the models using kinship matrix, PC, and Q. Broad-sense heritability (H2) across environments was 0.43 for shelf life, 0.36 for yield, and 0.60 for developmental rate. There was a negative correlation between yield and developmental rate. Significant marker-trait association (SMTA) was detected for shelf life on chromosome 4. The most significant quantitative trait locus (QTL,  qSL4, P = 2.23E-17) explained 24% of the total phenotypic variation (R2). The major QTL for developmental rate was detected on chromosome 7 (qDEV7, P = 2.43E-16, R2 = 17%), while additional QTLs with smaller effect were found in all chromosomes. No SMTA was detected for yield. The study identified lettuce accessions with extended and stable shelf life, stable yield, and desirable developmental rate. Molecular markers closely linked to traits can be applied for selection of preferable genotypes and for identification of genes associated with these traits.


Assuntos
Ligação Genética , Lactuca/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Mapeamento Cromossômico , Cruzamentos Genéticos , Armazenamento de Alimentos , Estudos de Associação Genética , Genótipo , Lactuca/fisiologia , Desequilíbrio de Ligação , Fenótipo , Filogenia , Análise de Componente Principal , Característica Quantitativa Herdável
8.
Plant Dis ; 103(5): 791-803, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30939071

RESUMO

Downy mildew on spinach is caused by Peronospora effusa, an oomycete pathogen that poses a challenge to spinach production worldwide, especially in organic production. Following infection, P. effusa produces abundant amounts of asexual sporangia. Sporangia become windborne and initiate new infections locally or distantly, leading to widespread epidemics. Oospores produced from the union of opposite mating types have been observed within infected leaves and seeds and may remain viable for many years. Sexual reproduction increases the genetic diversity of P. effusa through sexual recombination, and thus, the movement of oospores on seed has likely fueled the rapid explosion of new pathotypes in different regions of the world over the past 20 years. This review summarizes recent advances in spinach downy mildew research, especially in light of the findings of oospores in contemporary commercial spinach seed lots as well as their germination. Knowledge of the role of the oospores and other aspects of the disease cycle can directly translate into new and effective disease management strategies.


Assuntos
Peronospora , Doenças das Plantas , Spinacia oleracea , Peronospora/fisiologia , Doenças das Plantas/prevenção & controle , Folhas de Planta/microbiologia , Spinacia oleracea/microbiologia
9.
Sensors (Basel) ; 19(21)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694293

RESUMO

Salinity is a rising concern in many lettuce-growing regions. Lettuce (Lactuca sativa L.) is sensitive to salinity, which reduces plant biomass, and causes leaf burn and early senescence. We sought to identify physiological traits important in salt tolerance that allows lettuce adaptation to high salinity while maintaining its productivity. Based on previous salinity tolerance studies, one sensitive and one tolerant genotype each was selected from crisphead, butterhead, and romaine, as well as leaf types of cultivated lettuce and its wild relative, L. serriola L. Physiological parameters were measured four weeks after transplanting two-day old seedlings into 350 mL volume pots filled with sand, hydrated with Hoagland nutrient solution and grown in a growth chamber. Salinity treatment consisted of gradually increasing concentrations of NaCl and CaCl2 from 0 mM/0 mM at the time of transplanting, to 30 mM/15 mM at the beginning of week three, and maintaining it until harvest. Across the 10 genotypes, leaf area and fresh weight decreased 0-64% and 16-67%, respectively, under salinity compared to the control. Salinity stress increased the chlorophyll index by 4-26% in the cultivated genotypes, while decreasing it by 5-14% in the two wild accessions. Tolerant lines less affected by elevated salinity were characterized by high values of the chlorophyll fluorescence parameters Fv/Fm and instantaneous photosystem II quantum yield (QY), and lower leaf transpiration.


Assuntos
Lactuca/fisiologia , Fenômica , Salinidade , Adaptação Fisiológica , Biomassa , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Fluorescência , Lactuca/anatomia & histologia , Fotossíntese , Folhas de Planta/fisiologia , Análise de Componente Principal , Temperatura , Pressão de Vapor
10.
BMC Genomics ; 19(1): 851, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30486780

RESUMO

BACKGROUND: Spinach downy mildew caused by the oomycete Peronospora effusa is a significant burden on the expanding spinach production industry, especially for organic farms where synthetic fungicides cannot be deployed to control the pathogen. P. effusa is highly variable and 15 new races have been recognized in the past 30 years. RESULTS: We virulence phenotyped, sequenced, and assembled two isolates of P. effusa from the Salinas Valley, California, U.S.A. that were identified as race 13 and 14. These assemblies are high quality in comparison to assemblies of other downy mildews having low total scaffold count (784 & 880), high contig N50s (48 kb & 52 kb), high BUSCO completion and low BUSCO duplication scores and share many syntenic blocks with Phytophthora species. Comparative analysis of four downy mildew and three Phytophthora species revealed parallel absences of genes encoding conserved domains linked to transporters, pathogenesis, and carbohydrate activity in the biotrophic species. Downy mildews surveyed that have lost the ability to produce zoospores have a common loss of flagella/motor and calcium domain encoding genes. Our phylogenomic data support multiple origins of downy mildews from hemibiotrophic progenitors and suggest that common gene losses in these downy mildews may be of genes involved in the necrotrophic stages of Phytophthora spp. CONCLUSIONS: We present a high-quality draft genome of Peronospora effusa that will serve as a reference for Peronospora spp. We identified several Pfam domains as under-represented in the downy mildews consistent with the loss of zoosporegenesis and necrotrophy. Phylogenomics provides further support for a polyphyletic origin of downy mildews.


Assuntos
Adaptação Fisiológica/genética , Genômica , Peronospora/genética , Doenças das Plantas/microbiologia , Heterozigoto , Funções Verossimilhança , Mitocôndrias/genética , Anotação de Sequência Molecular , Peronospora/patogenicidade , Filogenia , Análise de Sequência de RNA , Sequências Repetidas Terminais/genética
11.
Theor Appl Genet ; 131(1): 79-91, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28948303

RESUMO

KEY MESSAGE: This is the first report on association analysis of salt tolerance and identification of SNP markers associated with salt tolerance in cowpea. Cowpea (Vigna unguiculata (L.) Walp) is one of the most important cultivated legumes in Africa. The worldwide annual production in cowpea dry seed is 5.4 million metric tons. However, cowpea is unfavorably affected by salinity stress at germination and seedling stages, which is exacerbated by the effects of climate change. The lack of knowledge on the genetic underlying salt tolerance in cowpea limits the establishment of a breeding strategy for developing salt-tolerant cowpea cultivars. The objectives of this study were to conduct association mapping for salt tolerance at germination and seedling stages and to identify SNP markers associated with salt tolerance in cowpea. We analyzed the salt tolerance index of 116 and 155 cowpea accessions at germination and seedling stages, respectively. A total of 1049 SNPs postulated from genotyping-by-sequencing were used for association analysis. Population structure was inferred using Structure 2.3.4; K optimal was determined using Structure Harvester. TASSEL 5, GAPIT, and FarmCPU involving three models such as single marker regression, general linear model, and mixed linear model were used for the association study. Substantial variation in salt tolerance index for germination rate, plant height reduction, fresh and dry shoot biomass reduction, foliar leaf injury, and inhibition of the first trifoliate leaf was observed. The cowpea accessions were structured into two subpopulations. Three SNPs, Scaffold87490_622, Scaffold87490_630, and C35017374_128 were highly associated with salt tolerance at germination stage. Seven SNPs, Scaffold93827_270, Scaffold68489_600, Scaffold87490_633, Scaffold87490_640, Scaffold82042_3387, C35069468_1916, and Scaffold93942_1089 were found to be associated with salt tolerance at seedling stage. The SNP markers were consistent across the three models and could be used as a tool to select salt-tolerant lines for breeding improved cowpea tolerance to salinity.


Assuntos
Germinação , Tolerância ao Sal/genética , Plântula/fisiologia , Vigna/genética , Marcadores Genéticos , Variação Genética , Genética Populacional , Genótipo , Modelos Genéticos , Filogenia , Polimorfismo de Nucleotídeo Único , Vigna/fisiologia
12.
BMC Genomics ; 18(1): 941, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29202697

RESUMO

BACKGROUND: Spinach is a useful source of dietary vitamins and mineral elements. Breeding new spinach cultivars with high nutritional value is one of the main goals in spinach breeding programs worldwide, and identification of single nucleotide polymorphism (SNP) markers for mineral element concentrations is necessary to support spinach molecular breeding. The purpose of this study was to conduct a genome-wide association study (GWAS) and to identify SNP markers associated with mineral elements in the USDA-GRIN spinach germplasm collection. RESULTS: A total of 14 mineral elements: boron (B), calcium (Ca), cobalt (Co), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), sodium (Na), nickel (Ni), phosphorus (P), sulfur (S), and zinc (Zn) were evaluated in 292 spinach accessions originally collected from 29 countries. Significant genetic variations were found among the tested genotypes as evidenced by the 2 to 42 times difference in mineral concentrations. A total of 2402 SNPs identified from genotyping by sequencing (GBS) approach were used for genetic diversity and GWAS. Six statistical methods were used for association analysis. Forty-five SNP markers were identified to be strongly associated with the concentrations of 13 mineral elements. Only two weakly associated SNP markers were associated with K concentration. Co-localized SNPs for different elemental concentrations were discovered in this research. Three SNP markers, AYZV02017731_40, AYZV02094133_57, and AYZV02281036_185 were identified to be associated with concentrations of four mineral components, Co, Mn, S, and Zn. There is a high validating correlation coefficient with r > 0.7 among concentrations of the four elements. Thirty-one spinach accessions, which rank in the top three highest concentrations in each of the 14 mineral elements, were identified as potential parents for spinach breeding programs in the future. CONCLUSIONS: The 45 SNP markers strongly associated with the concentrations of the 13 mineral elements: B, Ca, Co, Cu, Fe, Mg, Mn, Mo, Na, Ni, P, S, and Zn could be used in breeding programs to improve the nutritional quality of spinach through marker-assisted selection (MAS). The 31 spinach accessions with high concentrations of one to several mineral elements can be used as potential parents for spinach breeding programs.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla/métodos , Minerais/química , Folhas de Planta/química , Polimorfismo de Nucleotídeo Único , Spinacia oleracea/química , Spinacia oleracea/genética , Melhoramento Vegetal , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Análise de Sequência de DNA/métodos , Spinacia oleracea/crescimento & desenvolvimento
13.
Genome ; 59(8): 581-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27490441

RESUMO

Leafminer (Liriomyza langei) is a major insect pest of many important agricultural crops, including spinach (Spinacia oleracea). Use of genetic resistance is an efficient, economic, and environment-friendly method to control this pest. The objective of this research was to conduct association analysis and identify single nucleotide polymorphism (SNP) markers associated with leafminer resistance in spinach germplasm. A total of 300 USDA spinach germplasm accessions were used for the association analysis of leafminer resistance. Genotyping by sequencing (GBS) was used for genotyping and 783 SNPs from GBS were used for association analysis. The leafminer resistance showed a near normal distribution with a wide range from 1.1 to 11.7 stings per square centimeter leaf area, suggesting that the leafminer resistance in spinach is a complex trait controlled by multiple genes with minor effect in this spinach panel. Association analysis indicated that five SNP markers, AYZV02040968_7171, AYZV02076752_412, AYZV02098618_4615, AYZV02147304_383, and AYZV02271373_398, were associated with the leafminer resistance with LOD 2.5 or higher. The SNP markers may be useful for breeders to select plants and lines for leafminer resistance in spinach breeding programs through marker-assisted selection.


Assuntos
Artrópodes/genética , Resistência à Doença/genética , Spinacia oleracea/genética , Animais , Artrópodes/classificação , Sequência de Bases , Mapeamento Cromossômico , DNA de Plantas/genética , Genes de Plantas , Marcadores Genéticos/genética , Variação Genética , Genótipo , Técnicas de Genotipagem , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência , Spinacia oleracea/classificação
14.
Plants (Basel) ; 13(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732490

RESUMO

This study investigates the genetic determinants of seed coat color and pattern variations in cowpea (Vigna unguiculata), employing a genome-wide association approach. Analyzing a mapping panel of 296 cowpea varieties with 110,000 single nucleotide polymorphisms (SNPs), we focused on eight unique coat patterns: (1) Red and (2) Cream seed; (3) White and (4) Brown/Tan seed coat; (5) Pink, (6) Black, (7) Browneye and (8) Red/Brown Holstein. Across six GWAS models (GLM, SRM, MLM, MLMM, FarmCPU from GAPIT3, and TASSEL5), 13 significant SNP markers were identified and led to the discovery of 23 candidate genes. Among these, four specific genes may play a direct role in determining seed coat pigment. These findings lay a foundational basis for future breeding programs aimed at creating cowpea varieties aligned with consumer preferences and market requirements.

15.
Phytopathology ; 103(3): 268-80, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23190117

RESUMO

Verticillium wilt on spinach (Spinacia oleracea) is caused by the soilborne fungus Verticillium dahliae. The pathogen is seedborne and transmission through seed is a major concern because of the dispersal of the pathogen to areas where fresh and processing spinach crops are grown in rotation with susceptible crops. Reduction in seedborne inoculum minimizes pathogen spread; therefore, knowledge of pathogen localization in seed is critical to develop methods to reduce seedborne inoculum. Spinach seedlings were inoculated with conidial suspensions of a green fluorescent protein-tagged strain of V. dahliae and colonization events were followed through seed production by confocal laser-scanning microscopy. Between 24 to 96 h postinoculation (PI), conidia germinated and formed hyphal colonies on root tips and in root elongation zones. Hyphae colonized root cortical tissues both intra and intercellularly by 2 weeks, and colonized the taproot xylem with abundant mycelia and conidia that led to vascular discoloration coincident with foliar symptom expression by 8 weeks PI. At 10 weeks PI, the xylem of the upper stem, inflorescence, and spinach seed parts, including the pericarp, seed coat, cotyledons, and radicle, had been colonized by the pathogen but not the perisperm (the diploid maternal tissue). Maximum concentration of the fungus was in the seed coat, the outermost layer of the vasculature. Infection of V. dahliae in spinach seed was systemic and transmissible to developing seedlings. Additional analyses indicated that fungicide and steam seed treatments reduced detectable levels of the pathogen but did not eliminate the pathogen from the seed. This information will assist in the development of seed treatments that will reduce the seedborne inoculum transmission to crop production fields.


Assuntos
Doenças das Plantas/microbiologia , Sementes/microbiologia , Spinacia oleracea/microbiologia , Verticillium/patogenicidade , DNA Fúngico/análise , DNA Fúngico/genética , Proteínas de Fluorescência Verde , Interações Hospedeiro-Patógeno , Hifas , Fenótipo , Componentes Aéreos da Planta/citologia , Componentes Aéreos da Planta/microbiologia , Raízes de Plantas/citologia , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Sementes/citologia , Spinacia oleracea/citologia , Esporos Fúngicos , Verticillium/citologia , Verticillium/fisiologia
16.
Hortic Res ; 10(6): uhad076, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37323230

RESUMO

Commercial production of spinach (Spinacia oleracea L.) is centered in California and Arizona in the US, where downy mildew caused by Peronospora effusa is the most destructive disease. Nineteen typical races of P. effusa have been reported to infect spinach, with 16 identified after 1990. The regular appearance of new pathogen races breaks the resistance gene introgressed in spinach. We attempted to map and delineate the RPF2 locus at a finer resolution, identify linked single nucleotide polymorphism (SNP) markers, and report candidate downy mildew resistance (R) genes. Progeny populations segregating for RPF2 locus derived from resistant differential cultivar Lazio were infected using race 5 of P. effusa and were used to study for genetic transmission and mapping analysis in this study. Association analysis performed with low coverage whole genome resequencing-generated SNP markers mapped the RPF2 locus between 0.47 to 1.46 Mb of chromosome 3 with peak SNP (Chr3_1, 221, 009) showing a LOD value of 61.6 in the GLM model in TASSEL, which was within 1.08 Kb from Spo12821, a gene that encodes CC-NBS-LRR plant disease resistance protein. In addition, a combined analysis of progeny panels of Lazio and Whale segregating for RPF2 and RPF3 loci delineated the resistance section in chromosome 3 between 1.18-1.23 and 1.75-1.76 Mb. This study provides valuable information on the RPF2 resistance region in the spinach cultivar Lazio compared to RPF3 loci in the cultivar Whale. The RPF2 and RPF3 specific SNP markers, plus the resistant genes reported here, could add value to breeding efforts to develop downy mildew resistant cultivars in the future.

17.
Sci Rep ; 13(1): 21990, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081919

RESUMO

The APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) gene family plays vital roles in plants, serving as a key regulator in responses to abiotic stresses. Despite its significance, a comprehensive understanding of this family in lettuce remains incomplete. In this study, we performed a genome-wide search for the AP2/ERF family in lettuce and identified a total of 224 members. The duplication patterns provided evidence that both tandem and segmental duplications contributed to the expansion of this family. Ka/Ks ratio analysis demonstrated that, following duplication events, the genes have been subjected to purifying selection pressure, leading to selective constraints on their protein sequence. This selective pressure provides a dosage benefit against stresses in plants. Additionally, a transcriptome analysis indicated that some duplicated genes gained novel functions, emphasizing the contribution of both dosage effect and functional divergence to the family functionalities. Furthermore, an orthologous relationship study showed that 60% of genes descended from a common ancestor of Rosid and Asterid lineages, 28% from the Asterid ancestor, and 12% evolved in the lettuce lineage, suggesting lineage-specific roles in adaptive evolution. These results provide valuable insights into the evolutionary mechanisms of the AP2/ERF gene family in lettuce, with implications for enhancing abiotic stress tolerance, ultimately contributing to the genetic improvement of lettuce crop production.


Assuntos
Lactuca , Proteínas de Plantas , Etilenos , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Lactuca/genética , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Plants (Basel) ; 12(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37514320

RESUMO

Cowpea (Vigna unguiculata L. Walp., 2n = 2x = 22) is a protein-rich crop that complements staple cereals for humans and serves as fodder for livestock. It is widely grown in Africa and other developing countries as the primary source of protein in the diet; therefore, it is necessary to identify the protein-related loci to improve cowpea breeding. In the current study, we conducted a genome-wide association study (GWAS) on 161 cowpea accessions (151 USDA germplasm plus 10 Arkansas breeding lines) with a wide range of seed protein contents (21.8~28.9%) with 110,155 high-quality whole-genome single-nucleotide polymorphisms (SNPs) to identify markers associated with protein content, then performed genomic prediction (GP) for future breeding. A total of seven significant SNP markers were identified using five GWAS models (single-marker regression (SMR), the general linear model (GLM), Mixed Linear Model (MLM), Fixed and Random Model Circulating Probability Unification (FarmCPU), and Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK), which are located at the same locus on chromosome 8 for seed protein content. This locus was associated with the gene Vigun08g039200, which was annotated as the protein of the thioredoxin superfamily, playing a critical function for protein content increase and nutritional quality improvement. In this study, a genomic prediction (GP) approach was employed to assess the accuracy of predicting seed protein content in cowpea. The GP was conducted using cross-prediction with five models, namely ridge regression best linear unbiased prediction (rrBLUP), Bayesian ridge regression (BRR), Bayesian A (BA), Bayesian B (BB), and Bayesian least absolute shrinkage and selection operator (BL), applied to seven random whole genome marker sets with different densities (10 k, 5 k, 2 k, 1 k, 500, 200, and 7), as well as significant markers identified through GWAS. The accuracies of the GP varied between 42.9% and 52.1% across the seven SNPs considered, depending on the model used. These findings not only have the potential to expedite the breeding cycle through early prediction of individual performance prior to phenotyping, but also offer practical implications for cowpea breeding programs striving to enhance seed protein content and nutritional quality.

19.
Phytopathology ; 102(4): 443-51, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22236050

RESUMO

Verticillium dahliae is a soilborne fungus that causes Verticillium wilt on multiple crops in central coastal California. Although spinach crops grown in this region for fresh and processing commercial production do not display Verticillium wilt symptoms, spinach seeds produced in the United States or Europe are commonly infected with V. dahliae. Planting of the infected seed increases the soil inoculum density and may introduce exotic strains that contribute to Verticillium wilt epidemics on lettuce and other crops grown in rotation with spinach. A sensitive, rapid, and reliable method for quantification of V. dahliae in spinach seed may help identify highly infected lots, curtail their planting, and minimize the spread of exotic strains via spinach seed. In this study, a quantitative real-time polymerase chain reaction (qPCR) assay was optimized and employed for detection and quantification of V. dahliae in spinach germplasm and 15 commercial spinach seed lots. The assay used a previously reported V. dahliae-specific primer pair (VertBt-F and VertBt-R) and an analytical mill for grinding tough spinach seed for DNA extraction. The assay enabled reliable quantification of V. dahliae in spinach seed, with a sensitivity limit of ≈1 infected seed per 100 (1.3% infection in a seed lot). The quantification was highly reproducible between replicate samples of a seed lot and in different real-time PCR instruments. When tested on commercial seed lots, a pathogen DNA content corresponding to a quantification cycle value of ≥31 corresponded with a percent seed infection of ≤1.3%. The assay is useful in qualitatively assessing seed lots for V. dahliae infection levels, and the results of the assay can be helpful to guide decisions on whether to apply seed treatments.


Assuntos
Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sementes/microbiologia , Spinacia oleracea/microbiologia , Verticillium/isolamento & purificação , DNA Fúngico/análise , DNA Fúngico/genética , Reação em Cadeia da Polimerase em Tempo Real/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Verticillium/genética
20.
Hortic Res ; 9: uhac205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467269

RESUMO

Downy mildew, commercially the most important disease of spinach, is caused by the obligate oomycete Peronospora effusa. In the past two decades, new pathogen races have repeatedly overcome the resistance used in newly released cultivars, urging the need for more durable resistance. Commercial spinach cultivars are bred with major R genes to impart resistance to downy mildew pathogens and are effective against some pathogen races/isolates. This work aimed to evaluate the worldwide USDA spinach germplasm collections and commercial cultivars for resistance to downy mildew pathogen in the field condition under natural inoculum pressure and conduct genome wide association analysis (GWAS) to identify resistance-associated genomic regions (alleles). Another objective was to evaluate the prediction accuracy (PA) using several genomic prediction (GP) methods to assess the potential implementation of genomic selection (GS) to improve spinach breeding for resistance to downy mildew pathogen. More than four hundred diverse spinach genotypes comprising USDA germplasm accessions and commercial cultivars were evaluated for resistance to downy mildew pathogen between 2017-2019 in Salinas Valley, California and Yuma, Arizona. GWAS was performed using single nucleotide polymorphism (SNP) markers identified via whole genome resequencing (WGR) in GAPIT and TASSEL programs; detected 14, 12, 5, and 10 significantly associated SNP markers with the resistance from four tested environments, respectively; and the QTL alleles were detected at the previously reported region of chromosome 3 in three of the four experiments. In parallel, PA was assessed using six GP models and seven unique marker datasets for field resistance to downy mildew pathogen across four tested environments. The results suggest the suitability of GS to improve field resistance to downy mildew pathogen. The QTL, SNP markers, and PA estimates provide new information in spinach breeding to select resistant plants and breeding lines through marker-assisted selection (MAS) and GS, eventually helping to accumulate beneficial alleles for durable disease resistance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa