Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Chem ; 60(12): 1185-1188, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35919948

RESUMO

Codeine N-oxide 2 is an active metabolite of codeine obtained by oxidation and observed as a degradant in codeine drug products such as syrups. Oxidation of codeine's N-methyl function can deliver two regio-isomers due to chirality of the tetra-substituted nitrogen. Hydrogen peroxide oxidation of codeine was performed and induced two different isomers in a 9:1 ratio; these isomers were isolated using preparative high performance liquid chromatography (HPLC) and fully characterized by nuclear magnetic resonance (NMR) techniques. We describe the complete assignment of the minor isomer of codeine N-oxide 3 and attribute a (S) configuration (N-methyl axial) of the tetra-substituted nitrogen. The effects of N-oxidation on the 15 N chemical shifts of the codeine are presented. The 15 N shifts were determined using the CIGAR-HMBC experiment at natural abundance, and the nitrogen resonance of codeine shifted downfield from 42.8 to 118.7 ppm for both N-oxide isomers.


Assuntos
Codeína , Nitrogênio , Isomerismo , Oxirredução , Óxidos , Isótopos de Carbono , Isótopos de Nitrogênio
2.
Eur J Pharm Sci ; 188: 106519, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37478583

RESUMO

Tetralysal® is a Galderma oral drug product (DP) marketed for the treatment of acne. Tetralysal® is sold in capsules containing either 150 mg or 300 mg of the drug substance. In the British Pharmacopoeia monograph for Lymecycline Capsules, the impurities already specified in the drug substance (A-G), visible in the European Pharmacopoeia 〈1654〉, are also specified together with an unidentified impurity at RRT 1.6 (Impurity J). Based on both monographs Galderma has focused on characterizing most of specified and unspecified impurities to better understand the stability and degradation processes of the formulation. In this manuscript, through both formal synthesis, preparative LCMS and formal degradation studies, we are the first group to confirm the structural identities of 5 unidentified impurities (Impurity J (RRT 1.6), RRT 2.2, 2.4, 2.6 and 3.4), conditions which exacerbate the formation of all 5 impurities and response factors for RRT 2.2, 2.6 and 3.4.


Assuntos
Contaminação de Medicamentos , Limeciclina , Cromatografia Líquida de Alta Pressão
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa