Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 102021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34342583

RESUMO

Epoxide hydrolases (EHs) regulate cellular homeostasis through hydrolysis of epoxides to less-reactive diols. The first discovered EH was EPHX1, also known as mEH. EH functions remain partly unknown, and no pathogenic variants have been reported in humans. We identified two de novo variants located in EPHX1 catalytic site in patients with a lipoatrophic diabetes characterized by loss of adipose tissue, insulin resistance, and multiple organ dysfunction. Functional analyses revealed that these variants led to the protein aggregation within the endoplasmic reticulum and to a loss of its hydrolysis activity. CRISPR-Cas9-mediated EPHX1 knockout (KO) abolished adipocyte differentiation and decreased insulin response. This KO also promoted oxidative stress and cellular senescence, an observation confirmed in patient-derived fibroblasts. Metreleptin therapy had a beneficial effect in one patient. This translational study highlights the importance of epoxide regulation for adipocyte function and provides new insights into the physiological roles of EHs in humans.


Assuntos
Senescência Celular/genética , Diabetes Mellitus Lipoatrófica/genética , Diabetes Mellitus Lipoatrófica/fisiopatologia , Epóxido Hidrolases/genética , Compostos de Epóxi/metabolismo , Adolescente , Adulto , Epóxido Hidrolases/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Hidrólise , Mutação
2.
J Am Heart Assoc ; 9(2): e014276, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31959031

RESUMO

Background Heart attacks and stroke often result from occlusive thrombi following the rupture of vulnerable atherosclerotic plaques. Vascular smooth muscle cells (VSMCs) play a pivotal role in plaque vulnerability because of their switch towards a proinflammatory/macrophage-like phenotype when in the context of atherosclerosis. The prometastatic transcription factor Slug/Snail2 is a critical regulator of cell phenotypic transition. Here, we aimed to investigate the role of Slug in the transdifferentiation process of VSMCs occurring during atherogenesis. Methods and Results In rat and human primary aortic smooth muscle cells, Slug protein expression is strongly and rapidly increased by platelet-derived growth factor-BB (PDGF-BB). PDGF-BB increases Slug protein without affecting mRNA levels indicating that this growth factor stabilizes Slug protein. Immunocytochemistry and subcellular fractionation experiments reveal that PDGF-BB triggers a rapid accumulation of Slug in VSMC nuclei. Using pharmacological tools, we show that the PDGF-BB-dependent mechanism of Slug stabilization in VSMCs involves the extracellular signal-regulated kinase 1/2 pathway. Immunohistochemistry experiments on type V and type VI atherosclerotic lesions of human carotids show smooth muscle-specific myosin heavy chain-/Slug-positive cells surrounding the prothrombotic lipid core. In VSMCs, Slug siRNAs inhibit prostaglandin E2 secretion and prevent the inhibition of cholesterol efflux gene expression mediated by PDGF-BB, known to be involved in plaque vulnerability and/or thrombogenicity. Conclusions Our results highlight, for the first time, a role of Slug in aortic smooth muscle cell transdifferentiation and enable us to consider Slug as an actor playing a role in the atherosclerotic plaque progression towards a life-threatening phenotype. This also argues for common features between acute cardiovascular events and cancer.


Assuntos
Aterosclerose/metabolismo , Becaplermina/farmacologia , Transdiferenciação Celular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fatores de Transcrição da Família Snail/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Dinoprostona/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Cadeias Pesadas de Miosina/metabolismo , Ratos , Transdução de Sinais , Fatores de Transcrição da Família Snail/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa