RESUMO
Extranodal natural killer/T-cell lymphomas (NK/TL), rare in Europe, are Epstein-Barr virus (EBV) associated lymphomas with poor outcomes. Here, we determined the virus type and analyzed the EBV latent membrane protein-1 (LMP1) gene sequence in NK/TL from French patients. Six clones of viral LMP1 were sequenced by Sanger technology in blood from 13 patients before treatment with an l-asparaginase based regimen and, for 8 of them, throughout the treatment. Blood LMP1 sequences from 21 patients without any known malignancy were tested as controls. EBV Type A was identified for 11/13 patients and for all controls. Before treatment, a clonal LMP1 gene containing a 30 bp deletion (del30) was found in 46.1% of NK/TL and only in 4.8% of controls. Treatment was less effective in these patients who died more rapidly than the others. Patients with a deleted strain evolving toward a wild-type strain during treatment reached complete remission. The LMP1 gene was sequenced by highly sensitive next-generation sequencing technology in five NK/TL nasopharyngeal biopsies, two of them originating from the previous patients. Del30 was present in 100% of the biopsies; two viruses at least coexisted in three biopsies. These results suggest that del30 may be associated with poor prognosis NK/TL and that strain evolution could be used as a potential marker to monitor treatment.
Assuntos
Evolução Clonal , Infecções por Vírus Epstein-Barr/complicações , Deleção de Genes , Herpesvirus Humano 4/genética , Linfoma Extranodal de Células T-NK/etiologia , Proteínas da Matriz Viral/genética , Adulto , Idoso , Linhagem Celular Transformada , Infecções por Vírus Epstein-Barr/virologia , Europa (Continente) , Feminino , Humanos , Linfoma Extranodal de Células T-NK/terapia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto JovemRESUMO
Accurate decoding of nucleic acid variation is critical to understand the complexity and regulation of genome function. Here we use a single-molecule magnetic tweezer (MT) platform to identify sequence variation and map a range of important epigenetic base modifications with high sensitivity, specificity, and precision in the same single molecules of DNA or RNA. We have also developed a highly specific amplification-free CRISPR-Cas enrichment strategy to isolate genomic regions from native DNA. We demonstrate enrichment of DNA from both E. coli and the FMR1 5'UTR coming from cells derived from a Fragile X carrier. From these kilobase-length enriched molecules we could characterize the differential levels of adenine and cytosine base modifications on E. coli, and the repeat expansion length and methylation status of FMR1. Together these results demonstrate that our platform can detect a variety of genetic, epigenetic, and base modification changes concomitantly within the same single molecules.
Assuntos
Pareamento de Bases , DNA/genética , Epigênese Genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Variação Genética , RNA/genética , Imagem Individual de Molécula , Regiões 5' não Traduzidas , Sistemas CRISPR-Cas , DNA/metabolismo , Metilação de DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Humanos , Imãs , RNA/metabolismo , Imagem Individual de Molécula/instrumentação , Repetições de TrinucleotídeosRESUMO
BACKGROUND: Cytomegalovirus (CMV) is the major opportunistic virus encountered after transplantation, and resistant variants challenge antiviral treatment. We studied the emergence and evolution of the canonical UL97 L595S mutation in four kidney recipients by comparing Sanger sequencing with a specific next-generation sequencing (NGS) assay, and assessed the global evolution of UL97 gene variability. STUDY DESIGN: Plasmids harbouring wild-type and/or L595S mutated UL97 genes were used to assess the analytical performances of NGS assay. UL97 gene was retrospectively analysed in patients' samples drawn during CMV infection follow-up, Shannon entropy (Sn) was calculated and phylogenetic analyses were performed. RESULTS: Wild-type and L595S plasmids PCR products were mixed to obtain L595S concentrations of 0, 1, 2, 5, 10, 20 and 100%. Mean triplicate NGS results were 0, 0.71, 1.79, 5.30, 13.17, 17 and 100%, respectively, while Sanger sequencing only detected L595S when above 20%. The NGS mean error rate was 0.196±0.07%. In the four patients, emergence of L595S mutation under ganciclovir treatment was followed-up. After foscarnet rescue therapy, leading to undetectable CMV viral load, in two patients, L595S mutant re-emerged, but was only detected by NGS technology (14% and 9.6%). Using NGS data, phylogenetic trees and Sn showed a complex evolution of concomitant viral subpopulations. CONCLUSIONS: NGS technology allowed a deeper discrimination of the emergence and persistence of a drug resistance mutation, which could be pertinent to investigate when routine Sanger sequencing detects only wild-type strains. Moreover, NGS improved sensitivity helps in studying viral abundance, dynamics and diversity, less approachable with Sanger sequencing.