RESUMO
PURPOSE: The availability of validated biomarkers to assess radiation exposure and to assist in developing medical countermeasures remains an unmet need. METHODS AND MATERIALS: We used a cobalt-60 γ-irradiated nonhuman primate (NHP) model to delineate a multiomics-based serum probability index of radiation exposure. Both male and female NHPs were irradiated with different doses ranging from 6.0 to 8.5 Gy, with 0.5 Gy increments between doses. We leveraged high-resolution mass spectrometry for analysis of metabolites, lipids, and proteins at 1, 2, and 6 days postirradiation in NHP serum. RESULTS: A logistic regression model was implemented to develop a 4-analyte panel to stratify irradiated NHPs from unirradiated with high accuracy that was agnostic for all doses of γ-rays tested in the study, up to 6 days after exposure. This panel was comprised of Serpin family A9, acetylcarnitine, glycerophosphocholine (16:0/22:6), and suberylglycine, which showed 2- to 4-fold elevation in serum abundance upon irradiation in NHPs and can potentially be translated as a molecular diagnostic for human use after larger validation studies. CONCLUSIONS: Taken together, this study, for the first time, demonstrates the utility of a combinatorial molecular characterization approach using an NHP model for developing minimally invasive assays from small volumes of blood that can be effectively used for radiation exposure assessments.
Assuntos
Exposição à Radiação , Lesões por Radiação , Animais , Biomarcadores , Feminino , Raios gama/efeitos adversos , Humanos , Macaca mulatta , MasculinoRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy wherein a majority of patients present metastatic disease at diagnosis. Although the role of epithelial to mesenchymal transition (EMT), mediated by transforming growth factor beta (TGFß), in imparting an aggressive phenotype to PDAC is well documented, the underlying biochemical pathway perturbations driving this behaviour have not been elucidated. We used high-resolution mass spectrometry (HRMS) based molecular phenotyping approach in order to delineate metabolic changes concomitant to TGFß-induced EMT in pancreatic cancer cells. Strikingly, we observed robust changes in amino acid and energy metabolism that may contribute to tumor invasion and metastasis. Somewhat unexpectedly, TGFß treatment resulted in an increase in intracellular levels of retinoic acid (RA) that in turn resulted in increased levels of extracellular matrix (ECM) proteins including fibronectin (FN) and collagen (COL1). These findings were further validated in plasma samples obtained from patients with resectable pancreatic cancer. Taken together, these observations provide novel insights into small molecule dysregulation that triggers a molecular cascade resulting in increased EMT-like changes in pancreatic cancer cells, a paradigm that can be potentially targeted for better clinical outcomes.