Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(3): 597-605, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36510838

RESUMO

Our view of bacterial diversity has been dramatically impacted by cultivation-independent approaches such as metagenomics and 16S rRNA gene sequencing. Consequently, most bacterial phyla known to date are only documented by the presence of DNA sequences in databases and lack cultivated representatives. This bacterial majority that is yet-to-be cultivated, is forming the 'Microbial Dark Matter', (MDM) a consortium, whose ecology and biology remain largely unexplored. The Candidatus Dependentiae stands as one of many phyla within this MDM, found worldwide in various environments. Genomic evidence suggests ancestral, unusual adaptations of all Ca. Dependentiae to a host dependent lifestyle. In line with this, protists appear to be important for Ca. Dependentiae biology, as revealed by few recent studies, which enabled their growth in laboratory through host cultivation. However, the Ca. Dependentiae still remain to this day a poorly documented phylum. The present review aims to summarize the current knowledge accumulated on this often found, but rarely highlighted, bacterial phylum.


Assuntos
Bactérias , Genoma Bacteriano , RNA Ribossômico 16S/genética , Bactérias/genética , Ecologia , Genômica , Metagenômica , Filogenia
2.
Physiol Plant ; 175(6): e14062, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148238

RESUMO

Agriculture is particularly impacted by global changes, drought being a main limiting factor of crop production. Here, we focus on pea (Pisum sativum), a model legume cultivated for its seed nutritional value. A water deficit (WD) was applied during its early reproductive phase, harvesting plant organs at two key developmental stages, either at the embryonic or the seed-filling stages. We combined phenotypic, physiological and transcriptome analyses to better understand the adaptive response to drought. First, we showed that apical growth arrest is a major phenotypic indicator of water stress. Sugar content was also greatly impacted, especially leaf fructose and starch contents. Our RNA-seq analysis identified 2001 genes regulated by WD in leaf, 3684 genes in root and 2273 genes in embryonic seed, while only 80 genes were regulated during seed-filling. Hence, a large transcriptional reprogramming occurred in response to WD in seeds during early embryonic stage, but no longer during the later stage of nutritional filling. Biological processes involved in transcriptional regulation, carbon transport and metabolism were greatly regulated by WD in both source and sink organs, as illustrated by the expression of genes encoding transcription factors, sugar transporters and enzymes of the starch synthesis pathway. We then looked at the transcriptomic changes during seed development, highlighting a transition from monosaccharide utilization at the embryonic stage to sucrose transport feeding the starch synthesis pathway at the seed-filling stage. Altogether, our study presents an integrative picture of sugar transport and metabolism in response to drought and during seed development at a genome-wide level.


Assuntos
Pisum sativum , Sementes , Pisum sativum/genética , Transporte Biológico , Perfilação da Expressão Gênica , Amido/metabolismo , Regulação da Expressão Gênica de Plantas/genética
3.
PLoS Biol ; 17(10): e3000438, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31600190

RESUMO

Microbial endosymbiosis is widespread in animals, with major ecological and evolutionary implications. Successful symbiosis relies on efficient vertical transmission through host generations. However, when symbionts negatively affect host fitness, hosts are expected to evolve suppression of symbiont effects or transmission. Here, we show that sex chromosomes control vertical transmission of feminizing Wolbachia endosymbionts in the isopod Armadillidium nasatum. Theory predicts that the invasion of an XY/XX species by cytoplasmic sex ratio distorters is unlikely because it leads to fixation of the unusual (and often lethal or infertile) YY genotype. We demonstrate that A. nasatum X and Y sex chromosomes are genetically highly similar and that YY individuals are viable and fertile, thereby enabling Wolbachia spread in this XY-XX species. Nevertheless, we show that Wolbachia cannot drive fixation of YY individuals, because infected YY females do not transmit Wolbachia to their offspring, unlike XX and XY females. The genetic basis fits the model of a Y-linked recessive allele (associated with an X-linked dominant allele), in which the homozygous state suppresses Wolbachia transmission. Moreover, production of all-male progenies by infected YY females restores a balanced sex ratio at the host population level. This suggests that blocking of Wolbachia transmission by YY females may have evolved to suppress feminization, thereby offering a whole new perspective on the evolutionary interplay between microbial symbionts and host sex chromosomes.


Assuntos
Isópodes/genética , Cromossomos Sexuais , Processos de Determinação Sexual , Simbiose/genética , Wolbachia/fisiologia , Alelos , Animais , Feminino , Genótipo , Homozigoto , Isópodes/microbiologia , Masculino , Modelos Genéticos , Característica Quantitativa Herdável , Razão de Masculinidade
4.
Mol Biol Evol ; 36(4): 727-741, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668787

RESUMO

The terrestrial isopod Armadillidium vulgare is an original model to study the evolution of sex determination and symbiosis in animals. Its sex can be determined by ZW sex chromosomes, or by feminizing Wolbachia bacterial endosymbionts. Here, we report the sequence and analysis of the ZW female genome of A. vulgare. A distinguishing feature of the 1.72 gigabase assembly is the abundance of repeats (68% of the genome). We show that the Z and W sex chromosomes are essentially undifferentiated at the molecular level and the W-specific region is extremely small (at most several hundreds of kilobases). Our results suggest that recombination suppression has not spread very far from the sex-determining locus, if at all. This is consistent with A. vulgare possessing evolutionarily young sex chromosomes. We characterized multiple Wolbachia nuclear inserts in the A. vulgare genome, none of which is associated with the W-specific region. We also identified several candidate genes that may be involved in the sex determination or sexual differentiation pathways. The A. vulgare genome serves as a resource for studying the biology and evolution of crustaceans, one of the most speciose and emblematic metazoan groups.


Assuntos
Evolução Biológica , Genoma , Isópodes/genética , Cromossomos Sexuais , Processos de Determinação Sexual , Animais , Feminino , Masculino , Wolbachia/genética
5.
J Exp Bot ; 71(22): 7301-7315, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32860502

RESUMO

Plants live in close relationships with complex populations of microorganisms, including rhizobacterial species commonly referred to as plant growth-promoting rhizobacteria (PGPR). PGPR are able to improve plant productivity, but the molecular mechanisms involved in this process remain largely unknown. Using an in vitro experimental system, the model plant Arabidopsis thaliana, and the well-characterized PGPR strain Pseudomonas simiae WCS417r (PsWCS417r), we carried out a comprehensive set of phenotypic and gene expression analyses. Our results show that PsWCS417r induces major transcriptional changes in sugar transport and in other key biological processes linked to plant growth, development, and defense. Notably, we identified a set of 13 genes of the SWEET and ERD6-like sugar transporter gene families whose expression is up- or down-regulated in response to seedling root inoculation with the PGPR or exposure to their volatile compounds. Using a reverse genetic approach, we demonstrate that SWEET11 and SWEET12 are functionally involved in the interaction and its plant growth-promoting effects, possibly by controlling the amount of sugar transported from the shoot to the root and to the PGPR. Altogether, our study reveals that PGPR-induced beneficial effects on plant growth and development are associated with changes in plant sugar transport.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras , Raízes de Plantas/metabolismo , Pseudomonas/metabolismo , Açúcares
6.
BMC Genomics ; 20(1): 462, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31174468

RESUMO

BACKGROUND: Isopods constitute a particular group of crustaceans that has successfully colonized all environments including marine, freshwater and terrestrial habitats. Their ability to use various food sources, especially plant biomass, might be one of the reasons of their successful spread. All isopods, which feed on plants and their by-products, must be capable of lignocellulose degradation. This complex composite is the main component of plants and is therefore an important nutrient source for many living organisms. Its degradation requires a large repertoire of highly specialized Carbohydrate-Active enZymes (called CAZymes) which are produced by the organism itself and in some cases, by its associated microbiota. The acquisition of highly diversified CAZymes could have helped isopods to adapt to their diet and to their environment, especially during land colonization. RESULTS: To test this hypothesis, isopod host CAZomes (i.e. the entire CAZyme repertoire) were characterized in marine, freshwater and terrestrial species through a transcriptomic approach. Many CAZymes were identified in 64 isopod transcriptomes, comprising 27 de novo datasets. Our results show that marine, freshwater and terrestrial isopods exhibit different CAZomes, illustrating different strategies for lignocellulose degradation. The analysis of variations of the size of CAZy families shows these are expanded in terrestrial isopods while they are contracted in aquatic isopods; this pattern is probably resulting from the evolution of the host CAZomes during the terrestrial adaptation of isopods. We show that CAZyme gene duplications and horizontal transfers can be involved in adaptive divergence between isopod CAZomes. CONCLUSIONS: Our characterization of the CAZomes in 64 isopods species provides new insights into the evolutionary processes that enabled isopods to conquer various environments, especially terrestrial ones.


Assuntos
Isópodes/enzimologia , Lignina/metabolismo , Adaptação Fisiológica , Animais , Metabolismo dos Carboidratos/genética , Evolução Molecular , Isópodes/genética , Filogenia , Transcriptoma
7.
PLoS Genet ; 12(2): e1005838, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26829124

RESUMO

Many genes of large double-stranded DNA viruses have a cellular origin, suggesting that host-to-virus horizontal transfer (HT) of DNA is recurrent. Yet, the frequency of these transfers has never been assessed in viral populations. Here we used ultra-deep DNA sequencing of 21 baculovirus populations extracted from two moth species to show that a large diversity of moth DNA sequences (n = 86) can integrate into viral genomes during the course of a viral infection. The majority of the 86 different moth DNA sequences are transposable elements (TEs, n = 69) belonging to 10 superfamilies of DNA transposons and three superfamilies of retrotransposons. The remaining 17 sequences are moth sequences of unknown nature. In addition to bona fide DNA transposition, we uncover microhomology-mediated recombination as a mechanism explaining integration of moth sequences into viral genomes. Many sequences integrated multiple times at multiple positions along the viral genome. We detected a total of 27,504 insertions of moth sequences in the 21 viral populations and we calculate that on average, 4.8% of viruses harbor at least one moth sequence in these populations. Despite this substantial proportion, no insertion of moth DNA was maintained in any viral population after 10 successive infection cycles. Hence, there is a constant turnover of host DNA inserted into viral genomes each time the virus infects a moth. Finally, we found that at least 21 of the moth TEs integrated into viral genomes underwent repeated horizontal transfers between various insect species, including some lepidopterans susceptible to baculoviruses. Our results identify host DNA influx as a potent source of genetic diversity in viral populations. They also support a role for baculoviruses as vectors of DNA HT between insects, and call for an evaluation of possible gene or TE spread when using viruses as biopesticides or gene delivery vectors.


Assuntos
Baculoviridae/genética , Interações Hospedeiro-Patógeno/genética , Mariposas/genética , Mariposas/virologia , Animais , Sequência de Bases , Elementos de DNA Transponíveis/genética , Transferência Genética Horizontal , Genoma Viral , Padrões de Herança/genética , Motivos de Nucleotídeos/genética , Análise de Sequência de DNA
8.
Proc Natl Acad Sci U S A ; 113(52): 15036-15041, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27930295

RESUMO

Sex determination is a fundamental developmental pathway governing male and female differentiation, with profound implications for morphology, reproductive strategies, and behavior. In animals, sex differences between males and females are generally determined by genetic factors carried by sex chromosomes. Sex chromosomes are remarkably variable in origin and can differ even between closely related species, indicating that transitions occur frequently and independently in different groups of organisms. The evolutionary causes underlying sex chromosome turnover are poorly understood, however. Here we provide evidence indicating that Wolbachia bacterial endosymbionts triggered the evolution of new sex chromosomes in the common pillbug Armadillidium vulgare We identified a 3-Mb insert of a feminizing Wolbachia genome that was recently transferred into the pillbug nuclear genome. The Wolbachia insert shows perfect linkage to the female sex, occurs in a male genetic background (i.e., lacking the ancestral W female sex chromosome), and is hemizygous. Our results support the conclusion that the Wolbachia insert is now acting as a female sex-determining region in pillbugs, and that the chromosome carrying the insert is a new W sex chromosome. Thus, bacteria-to-animal horizontal genome transfer represents a remarkable mechanism underpinning the birth of sex chromosomes. We conclude that sex ratio distorters, such as Wolbachia endosymbionts, can be powerful agents of evolutionary transitions in sex determination systems in animals.


Assuntos
Transferência Genética Horizontal , Genoma Bacteriano , Cromossomos Sexuais , Wolbachia/genética , Animais , Evolução Biológica , Cruzamentos Genéticos , Citoplasma/metabolismo , Feminino , Genótipo , Isópodes/microbiologia , Masculino , Microscopia Eletrônica de Transmissão , Filogenia , Processos de Determinação Sexual , Razão de Masculinidade , Simbiose
9.
BMC Biol ; 16(1): 43, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29669603

RESUMO

BACKGROUND: Oomycetes are a group of filamentous eukaryotic microorganisms that have colonized all terrestrial and oceanic ecosystems, and they include prominent plant pathogens. The Aphanomyces genus is unique in its ability to infect both plant and animal species, and as such exemplifies oomycete versatility in adapting to different hosts and environments. Dissecting the underpinnings of oomycete diversity provides insights into their specificity and pathogenic mechanisms. RESULTS: By carrying out genomic analyses of the plant pathogen A. euteiches and the crustacean pathogen A. astaci, we show that host specialization is correlated with specialized secretomes that are adapted to the deconstruction of the plant cell wall in A. euteiches and protein degradation in A. astaci. The A. euteiches genome is characterized by a large repertoire of small secreted protein (SSP)-encoding genes that are highly induced during plant infection, and are not detected in other oomycetes. Functional analysis revealed an SSP from A. euteiches containing a predicted nuclear-localization signal which shuttles to the plant nucleus and increases plant susceptibility to infection. CONCLUSION: Collectively, our results show that Aphanomyces host adaptation is associated with evolution of specialized secretomes and identify SSPs as a new class of putative oomycete effectors.


Assuntos
Aphanomyces/patogenicidade , Genômica/métodos , Aclimatação/genética , Aclimatação/fisiologia , Animais , Aphanomyces/genética , Oomicetos/genética , Oomicetos/patogenicidade , Doenças das Plantas/microbiologia
10.
Environ Sci Technol ; 51(9): 5172-5181, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28345896

RESUMO

Polyethylene (PE), one of the most prominent synthetic polymers used worldwide, is very poorly biodegradable in the natural environment. Consequently, PE represents by itself more than half of all plastic wastes. PE biodegradation is achieved through the combination of abiotic and biotic processes. Several microorganisms have been shown to grow on the surface of PE materials, among which are the species of the Rhodococcus genus, suggesting a potent ability of these microorganisms to use, at least partly, PE as a potent carbon source. However, most of them, if not all, fail to induce a clear-cut degradation of PE samples, showing that bottlenecks to reach optimal biodegradation clearly exist. To identify the pathways involved in PE consumption, we used in the present study a combination of RNA-sequencing and lipidomic strategies. We show that short-term exposure to various forms of PE, displaying different molecular weight distributions and oxidation levels, lead to an increase in the expression of 158 genes in a Rhodococcus representative, R. ruber. Interestingly, one of the most up-regulated pathways is related to alkane degradation and ß-oxidation of fatty acids. This approach also allowed us to identify metabolic limiting steps, which could be fruitfully targeted for optimized PE consumption by R. ruber.


Assuntos
Polietileno/metabolismo , Rhodococcus/metabolismo , Sequência de Bases , Biodegradação Ambiental , Oxirredução
11.
BMC Genomics ; 15: 407, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24884896

RESUMO

BACKGROUND: Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus are lactic acid producing bacteria that are largely used in dairy industries, notably in cheese-making and yogurt production. An earlier in-depth study of the first completely sequenced ssp. bulgaricus genome revealed the characteristics of a genome in an active phase of rapid evolution, in what appears to be an adaptation to the milk environment. Here we examine for the first time if the same conclusions apply to the ssp. lactis, and discuss intra- and inter-subspecies genomic diversity in the context of evolutionary adaptation. RESULTS: Both L. delbrueckii ssp. show the signs of reductive evolution through the elimination of superfluous genes, thereby limiting their carbohydrate metabolic capacities and amino acid biosynthesis potential. In the ssp. lactis this reductive evolution has gone less far than in the ssp. bulgaricus. Consequently, the ssp. lactis retained more extended carbohydrate metabolizing capabilities than the ssp. bulgaricus but, due to high intra-subspecies diversity, very few carbohydrate substrates, if any, allow a reliable distinction of the two ssp. We further show that one of the most important traits, lactose fermentation, of one of the economically most important dairy bacteria, L. delbruecki ssp. bulgaricus, relies on horizontally acquired rather than deep ancestral genes. In this sense this bacterium may thus be regarded as a natural GMO avant la lettre. CONCLUSIONS: The dairy lactic acid producing bacteria L. delbrueckii ssp. lactis and ssp. bulgaricus appear to represent different points on the same evolutionary track of adaptation to the milk environment through the loss of superfluous functions and the acquisition of functions that allow an optimized utilization of milk resources, where the ssp. bulgaricus has progressed further away from the common ancestor.


Assuntos
Evolução Molecular , Genes Bacterianos , Lactobacillus delbrueckii/genética , Aminoácidos/biossíntese , Proteínas de Bactérias/genética , Metabolismo dos Carboidratos , Fermentação , Transferência Genética Horizontal , Genoma Bacteriano , Tipagem de Sequências Multilocus , Proteoma/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Data Brief ; 55: 110655, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39044909

RESUMO

After Amazonia, the Congo Basin represents the second-largest tropical rainforest area in the world. This basin harbours remarkable biodiversity, yet much of its microbiological diversity within its waters, soils, and populations remains largely unexplored and undiscovered. While many initiatives to characterize global biodiversity are being undertaken, few are conducted in Africa and none of them concern the Congo Basin specifically in urban areas. In this context, we assessed the microbial diversity present in gutter water in the city of Pointe-Noire, Congo. This town has interesting characteristics as the population density is high and it is located between the Atlantic Ocean and the forest of Mayombe in Central Africa. The findings illuminate the microbial composition of surface water in Pointe-Noire. The dataset allows the identification of putative new bacteria through the assembly of 81 meta-genome-assembled genomes. It also serves as a valuable primary resource for assessing the presence of antibiotic-resistant genes, offering a useful tool for monitoring risks by public health authorities.

13.
ISME Commun ; 3(1): 18, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882494

RESUMO

The order Holosporales (Alphaproteobacteria) encompasses obligate intracellular bacterial symbionts of diverse Eukaryotes. These bacteria have highly streamlined genomes and can have negative fitness effects on the host. Herein, we present a comparative analysis of the first genome sequences of 'Ca. Hepatincola porcellionum', a facultative symbiont occurring extracellularly in the midgut glands of terrestrial isopods. Using a combination of long-read and short-read sequencing, we obtained the complete circular genomes of two Hepatincola strains and an additional metagenome-assembled draft genome. Phylogenomic analysis validated its phylogenetic position as an early-branching family-level clade relative to all other established Holosporales families associated with protists. A 16S rRNA gene survey revealed that this new family encompasses diverse bacteria associated with both marine and terrestrial host species, which expands the host range of Holosporales bacteria from protists to several phyla of the Ecdysozoa (Arthropoda and Priapulida). Hepatincola has a highly streamlined genome with reduced metabolic and biosynthetic capacities as well as a large repertoire of transmembrane transporters. This suggests that this symbiont is rather a nutrient scavenger than a nutrient provider for the host, likely benefitting from a nutrient-rich environment to import all necessary metabolites and precursors. Hepatincola further possesses a different set of bacterial secretion systems compared to protist-associated Holosporales, suggesting different host-symbiont interactions depending on the host organism.

14.
Symbiosis ; 58(1-3): 201-207, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23482460

RESUMO

Wolbachia endosymbionts are widespread in arthropods and are generally considered reproductive parasites, inducing various phenotypes including cytoplasmic incompatibility, parthenogenesis, feminization and male killing, which serve to promote their spread through populations. In contrast, Wolbachia infecting filarial nematodes that cause human diseases, including elephantiasis and river blindness, are obligate mutualists. DNA purification methods for efficient genomic sequencing of these unculturable bacteria have proven difficult using a variety of techniques. To efficiently capture endosymbiont DNA for studies that examine the biology of symbiosis, we devised a parallel strategy to an earlier array-based method by creating a set of SureSelect™ (Agilent) 120-mer target enrichment RNA oligonucleotides ("baits") for solution hybrid selection. These were designed from Wolbachia complete and partial genome sequences in GenBank and were tiled across each genomic sequence with 60 bp overlap. Baits were filtered for homology against host genomes containing Wolbachia using BLAT and sequences with significant host homology were removed from the bait pool. Filarial parasite Brugia malayi DNA was used as a test case, as the complete sequence of both Wolbachia and its host are known. DNA eluted from capture was size selected and sequencing samples were prepared using the NEBNext® Sample Preparation Kit. One-third of a 50 nt paired-end sequencing lane on the HiSeq™ 2000 (Illumina) yielded 53 million reads and the entirety of the Wolbachia genome was captured. We then used the baits to isolate more than 97.1 % of the genome of a distantly related Wolbachia strain from the crustacean Armadillidium vulgare, demonstrating that the method can be used to enrich target DNA from unculturable microbes over large evolutionary distances.

15.
Front Microbiol ; 13: 856908, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677904

RESUMO

Protozoa play important roles in microbial communities, regulating populations via predation and contributing to nutrient cycling. While amoebae have been identified in acid rock drainage (ARD) systems, our understanding of their symbioses in these extreme environments is limited. Here, we report the first isolation of the amoeba Stemonitis from an ARD environment as well as the genome sequence and annotation of an associated bacterium, Dyella terrae strain Ely Copper Mine, from Ely Brook at the Ely Copper Mine Superfund site in Vershire, Vermont, United States. Fluorescent in situ hybridization analysis showed this bacterium colonizing cells of Stemonitis sp. in addition to being outside of amoebal cells. This amoeba-resistant bacterium is Gram-negative with a genome size of 5.36 Mbp and GC content of 62.5%. The genome of the D. terrae strain Ely Copper Mine encodes de novo biosynthetic pathways for amino acids, carbohydrates, nucleic acids, and lipids. Genes involved in nitrate (1) and sulfate (7) reduction, metal (229) and antibiotic resistance (37), and secondary metabolite production (6) were identified. Notably, 26 hydrolases were identified by RAST as well as other biomass degradation genes, suggesting roles in carbon and energy cycling within the microbial community. The genome also contains type IV secretion system genes involved in amoebae resistance, revealing how this bacterium likely survives predation from Stemonitis sp. This genome analysis and the association of D. terrae strain Ely Copper Mine with Stemonitis sp. provide insight into the functional roles of amoebae and bacteria within ARD environments.

16.
Nat Commun ; 13(1): 4104, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835784

RESUMO

Encystment is a common stress response of most protists, including free-living amoebae. Cyst formation protects the amoebae from eradication and can increase virulence of the bacteria they harbor. Here, we mapped the global molecular changes that occur in the facultatively pathogenic amoeba Acanthamoeba castellanii during the early steps of the poorly understood process of encystment. By performing transcriptomic, proteomic, and phosphoproteomic experiments during encystment, we identified more than 150,000 previously undescribed transcripts and thousands of protein sequences absent from the reference genome. These results provide molecular details to the regulation of expected biological processes, such as cell proliferation shutdown, and reveal new insights such as a rapid phospho-regulation of sites involved in cytoskeleton remodeling and translation regulation. This work constitutes the first time-resolved molecular atlas of an encysting organism and a useful resource for further investigation of amoebae encystment to allow for a better control of pathogenic amoebae.


Assuntos
Acanthamoeba castellanii , Amoeba , Acanthamoeba castellanii/microbiologia , Amoeba/fisiologia , Bactérias , Proteômica , Virulência
17.
J Bacteriol ; 193(7): 1785, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21278298

RESUMO

Taylorella equigenitalis is the causative agent of contagious equine metritis (CEM), a sexually transmitted infection of horses. We herein report the genome sequence of T. equigenitalis strain MCE9, isolated in 2005 from the urethral fossa of a 4-year-old stallion in France.


Assuntos
Endometrite/veterinária , Genoma Bacteriano , Doenças dos Cavalos/microbiologia , Taylorella equigenitalis/classificação , Taylorella equigenitalis/genética , Animais , Endometrite/microbiologia , Feminino , Cavalos , Dados de Sequência Molecular
18.
Microorganisms ; 9(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440837

RESUMO

The crucial role of microbes in the evolution, development, health, and ecological interactions of multicellular organisms is now widely recognized in the holobiont concept. However, the structure and stability of microbiota are highly dependent on abiotic and biotic factors, especially in the gut, which can be colonized by transient bacteria depending on the host's diet. We studied these impacts by manipulating the digestive microbiota of the detritivore Armadillidium vulgare and analyzing the consequences on its structure and function. Hosts were exposed to initial starvation and then were fed diets that varied the different components of lignocellulose. A total of 72 digestive microbiota were analyzed according to the type of the diet (standard or enriched in cellulose, lignin, or hemicellulose) and the period following dysbiosis. The results showed that microbiota from the hepatopancreas were very stable and resilient, while the most diverse and labile over time were found in the hindgut. Dysbiosis and selective diets may have affected the host fitness by altering the structure of the microbiota and its predicted functions. Overall, these modifications can therefore have effects not only on the holobiont, but also on the "eco-holobiont" conceptualization of macroorganisms.

19.
Biotechnol Biofuels ; 13: 49, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190114

RESUMO

BACKGROUND: Isopods have colonized all environments, partly thanks to their ability to decompose the organic matter. Their enzymatic repertoire, as well as the one of their associated microbiota, has contributed to their colonization success. Together, these holobionts have evolved several interesting life history traits to degrade the plant cell walls, mainly composed of lignocellulose. It has been shown that terrestrial isopods achieve lignocellulose degradation thanks to numerous and diverse CAZymes provided by both the host and its microbiota. Nevertheless, the strategies for lignocellulose degradation seem more diversified in isopods, in particular in aquatic species which are the least studied. Isopods could be an interesting source of valuable enzymes for biotechnological industries of biomass conversion. RESULTS: To provide new features on the lignocellulose degradation in isopod holobionts, shotgun sequencing of 36 metagenomes of digestive and non-digestive tissues was performed from several populations of four aquatic and terrestrial isopod species. Combined to the 15 metagenomes of an additional species from our previous study, as well as the host transcriptomes, this large dataset allowed us to identify the CAZymes in both the host and the associated microbial communities. Analyses revealed the dominance of Bacteroidetes and Proteobacteria in the five species, covering 36% and 56% of the total bacterial community, respectively. The identification of CAZymes and new enzymatic systems for lignocellulose degradation, such as PULs, cellulosomes and LPMOs, highlights the richness of the strategies used by the isopods and their associated microbiota. CONCLUSIONS: Altogether, our results show that the isopod holobionts are promising models to study lignocellulose degradation. These models can provide new enzymes and relevant lignocellulose-degrading bacteria strains for the biotechnological industries of biomass conversion.

20.
Data Brief ; 29: 105166, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32071963

RESUMO

The white-clawed crayfish (Austropotamobius pallipes) is an endangered species in Europe with limited genomic information. Despite its conservation status there is no transcriptomic data available for A. pallipes in public databases. The data here represents the first transcriptome profile of the white-clawed crayfish generated using Illumina stranded RNA sequencing. Pair-end reads were assembled de novo with three separate transcriptome assemblers (Trinity, RNABloom, and RNASpades) followed by transcript assembly reduction and gene reconstruction using the EvidentialGene pipeline. The transcriptome was functionally annotated using InterProScan and genes coding for carbohydrate-active enzymes were identified through the dbCAN2 server. Raw fastq reads and the final version of the transcriptome assembly have been deposited in the NCBI-SRA (SRR10549898) and NCBI-TSA (GICG01) databases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa