Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Physiol Genomics ; 55(11): 487-503, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37602394

RESUMO

Chronic hypercapnia (CH) is a hallmark of respiratory-related diseases, and the level of hypercapnia can acutely or progressively become more severe. Previously, we have shown time-dependent adaptations in steady-state physiology during mild (arterial Pco2 ∼55 mmHg) and moderate (∼60 mmHg) CH in adult goats, including transient (mild CH) or sustained (moderate CH) suppression of acute chemosensitivity suggesting limitations in adaptive respiratory control mechanisms as the level of CH increases. Changes in specific markers of glutamate receptor plasticity, interleukin-1ß, and serotonergic modulation within key nodes of cardiorespiratory control do not fully account for the physiological adaptations to CH. Here, we used an unbiased approach (bulk tissue RNA sequencing) to test the hypothesis that mild or moderate CH elicits distinct gene expression profiles in important brain stem regions of cardiorespiratory control, which may explain the contrasting responses to CH. Gene expression profiles from the brain regions validated the accuracy of tissue biopsy methodology. Differential gene expression analyses revealed greater effects of CH on brain stem sites compared with the medial prefrontal cortex. Mild CH elicited an upregulation of predominantly immune-related genes and predicted activation of immune-related pathways and functions. In contrast, moderate CH broadly led to downregulation of genes and predicted inactivation of cellular pathways related to the immune response and vascular function. These data suggest that mild CH leads to a steady-state activation of neuroinflammatory pathways within the brain stem, whereas moderate CH drives the opposite response. Transcriptional shifts in immune-related functions may underlie the cardiorespiratory network's capability to respond to acute, more severe hypercapnia when in a state of progressively increased CH.NEW & NOTEWORTHY Mild chronic hypercapnia (CH) broadly upregulated immune-related genes and a predicted activation of biological pathways related to immune cell activity and the overall immune response. In contrast, moderate CH primarily downregulated genes related to major histocompatibility complex signaling and vasculature function that led to a predicted inactivation of pathways involving the immune response and vascular endothelial function. The severity-dependent effect on immune responses suggests that neuroinflammation has an important role in CH and may be important in the maintenance of proper ventilatory responses to acute and chronic hypercapnia.


Assuntos
Hipercapnia , Transcriptoma , Humanos , Hipercapnia/genética , Hipercapnia/metabolismo , Hipercapnia/patologia , Transcriptoma/genética , Encéfalo/metabolismo , Perfilação da Expressão Gênica , Imunidade
2.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R467-R485, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35348007

RESUMO

Hypertension characterized by low circulating renin activity accounts for roughly 25%-30% of primary hypertension in humans and can be modeled experimentally via deoxycorticosterone acetate (DOCA)-salt treatment. In this model, phenotypes develop in progressive phases, although the timelines and relative contributions of various mechanisms to phenotype development can be distinct between laboratories. To explore interactions among environmental influences such as diet formulation and dietary sodium (Na) content on phenotype development in the DOCA-salt paradigm, we examined an array of cardiometabolic endpoints in young adult male C57BL/6J mice during sham or DOCA-salt treatments when mice were maintained on several common, commercially available laboratory rodent "chow" diets including PicoLab 5L0D (0.39% Na), Envigo 7913 (0.31% Na), Envigo 2920x (0.15% Na), or a customized version of Envigo 2920x (0.4% Na). Energy balance (weight gain, food intake, digestive efficiency, and energy efficiency), fluid and electrolyte homeostasis (fluid intake, Na intake, fecal Na content, hydration, and fluid compartmentalization), renal functions (urine production rate, glomerular filtration rate, urine Na excretion, renal expression of renin, vasopressin receptors, aquaporin-2 and relationships among markers of vasopressin release, aquaporin-2 shedding, and urine osmolality), and blood pressure, all exhibited changes that were subject to interactions between diet and DOCA-salt. Interestingly, some of these phenotypes, including blood pressure and hydration, were dependent on nonsodium dietary components, as Na-matched diets resulted in distinct phenotype development. These findings provide a broad and robust illustration of an environment × treatment interaction that impacts the use and interpretation of a common rodent model of low-renin hypertension.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Animais , Aquaporina 2 , Pressão Sanguínea/fisiologia , Desoxicorticosterona/farmacologia , Acetato de Desoxicorticosterona/farmacologia , Dieta , Hipertensão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Renina/metabolismo , Sódio/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 316(3): L506-L518, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30652496

RESUMO

Infants born very prematurely (<28 wk gestation) have immature lungs and often require supplemental oxygen. However, long-term hyperoxia exposure can arrest lung development, leading to bronchopulmonary dysplasia (BPD), which increases acute and long-term respiratory morbidity and mortality. The neural mechanisms controlling breathing are highly plastic during development. Whether the ventilatory control system adapts to pulmonary disease associated with hyperoxia exposure in infancy remains unclear. Here, we assessed potential age-dependent adaptations in the control of breathing in an established rat model of BPD associated with hyperoxia. Hyperoxia exposure ( FIO2 ; 0.9 from 0 to 10 days of life) led to a BPD-like lung phenotype, including sustained reductions in alveolar surface area and counts, and modest increases in airway resistance. Hyperoxia exposure also led to chronic increases in room air and acute hypoxic minute ventilation (V̇e) and age-dependent changes in breath-to-breath variability. Hyperoxia-exposed rats had normal oxygen saturation ( SpO2 ) in room air but greater reductions in SpO2 during acute hypoxia (12% O2) that were likely due to lung injury. Moreover, acute ventilatory sensitivity was reduced at P12 to P14. Perinatal hyperoxia led to greater glial fibrillary acidic protein expression and an increase in neuron counts within six of eight or one of eight key brainstem regions, respectively, controlling breathing, suggesting astrocytic expansion. In conclusion, perinatal hyperoxia in rats induced a BPD-like phenotype and age-dependent adaptations in V̇e that may be mediated through changes to the neural architecture of the ventilatory control system. Our results suggest chronically altered ventilatory control in BPD.


Assuntos
Displasia Broncopulmonar/metabolismo , Hiperóxia/metabolismo , Hipóxia/metabolismo , Lesão Pulmonar/metabolismo , Fatores Etários , Animais , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Hiperóxia/patologia , Hipertensão Pulmonar/metabolismo , Hipóxia/patologia , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/patologia , Ratos
4.
Eur Respir J ; 54(6)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515405

RESUMO

Most published studies addressing the role of hypoxia inducible factors (HIFs) in hypoxia-induced pulmonary hypertension development employ models that may not recapitulate the clinical setting, including the use of animals with pre-existing lung/vascular defects secondary to embryonic HIF ablation or activation. Furthermore, critical questions including how and when HIF signalling contributes to hypoxia-induced pulmonary hypertension remain unanswered.Normal adult rodents in which global HIF1 or HIF2 was inhibited by inducible gene deletion or pharmacological inhibition (antisense oligonucleotides (ASO) and small molecule inhibitors) were exposed to short-term (4 days) or chronic (4-5 weeks) hypoxia. Haemodynamic studies were performed, the animals euthanised, and lungs and hearts obtained for pathological and transcriptomic analysis. Cell-type-specific HIF signals for pulmonary hypertension initiation were determined in normal pulmonary vascular cells in vitro and in mice (using cell-type-specific HIF deletion).Global Hif1a deletion in mice did not prevent hypoxia-induced pulmonary hypertension at 5 weeks. Mice with global Hif2a deletion did not survive long-term hypoxia. Partial Hif2a deletion or Hif2-ASO (but not Hif1-ASO) reduced vessel muscularisation, increases in pulmonary arterial pressures and right ventricular hypertrophy in mice exposed to 4-5 weeks of hypoxia. A small molecule HIF2 inhibitor (PT2567) significantly attenuated early events (monocyte recruitment and vascular cell proliferation) in rats exposed to 4 days of hypoxia, as well as vessel muscularisation, tenascin C accumulation and pulmonary hypertension development in rats exposed to 5 weeks of hypoxia. In vitro, HIF2 induced a distinct set of genes in normal human pulmonary vascular endothelial cells, mediating inflammation and proliferation of endothelial cells and smooth muscle cells. Endothelial Hif2a knockout prevented hypoxia-induced pulmonary hypertension in mice.Inhibition of HIF2 (but not HIF1) can provide a therapeutic approach to prevent the development of hypoxia-induced pulmonary hypertension. Future studies are needed to investigate the role of HIFs in pulmonary hypertension progression and reversal.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipertensão Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Regulação da Expressão Gênica , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Hipóxia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Artéria Pulmonar/citologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Remodelação Vascular
5.
Physiol Genomics ; 50(9): 807-816, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30004839

RESUMO

Extracellular superoxide dismutase (EC-SOD), one of three mammalian SOD isoforms, is the sole extracellular enzymatic defense against superoxide. A known human single nucleotide polymorphism (SNP) in the matrix-binding domain of EC-SOD characterized by an arginine-to-glycine substitution at position 213 (R213G) redistributes EC-SOD from the matrix into extracellular fluids. We previously reported that knock-in mice harboring the human R213G SNP (R213G mice) exhibited enhanced resolution of inflammation with subsequent protection against fibrosis following bleomycin treatment compared with wild-type (WT) littermates. Herein we set out to determine the underlying pathways with RNA-Seq analysis of WT and R213G lungs 7 days post-PBS and bleomycin. RNA-Seq analysis uncovered significant differential gene expression changes induced in WT and R213G strains in response to bleomycin. Ingenuity Pathways Analysis was used to predict differentially regulated up- and downstream processes based on transcriptional changes. Most prominent was the induction of inflammatory and immune responses in WT mice, which were suppressed in the R213G mice. Specifically, PKC signaling in T lymphocytes, IL-6, and NFΚB signaling were opposed in WT mice when compared with R213G. Several upstream regulators such as IFNγ, IRF3, and IKBKG were implicated in the divergent responses between WT and R213G mice. Our data suggest that the redistributed EC-SOD due to the R213G SNP attenuates the dysregulated inflammatory responses observed in WT mice. We speculate that redistributed EC-SOD protects against dysregulated alveolar inflammation via reprogramming of recruited immune cells toward a proresolving state.


Assuntos
Inflamação/genética , Inflamação/prevenção & controle , Polimorfismo de Nucleotídeo Único/genética , Superóxido Dismutase/genética , Animais , Bleomicina , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Inflamação/induzido quimicamente , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Transcriptoma/genética
6.
Am J Respir Cell Mol Biol ; 56(3): 362-371, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27805412

RESUMO

Loss of extracellular superoxide dismutase 3 (SOD3) contributes to inflammatory and fibrotic lung diseases. The human SOD3 R213G polymorphism decreases matrix binding, redistributing SOD3 from the lung to extracellular fluids, and protects against LPS-induced alveolar inflammation. We used R213G mice expressing a naturally occurring single-nucleotide polymorphism, rs1799895, within the heparin-binding domain of SOD3, which results in an amino acid substitution at position 213 to test the hypothesis that the redistribution of SOD3 into the extracellular fluids would impart protection against bleomycin-induced lung fibrosis and secondary pulmonary hypertension (PH). In R213G mice, SOD3 content and activity was increased in extracellular fluids and decreased in lung at baseline, with greater increases in bronchoalveolar lavage fluid (BALF) SOD3 compared with wild-type mice 3 days after bleomycin. R213G mice developed less fibrosis based on pulmonary mechanics, fibrosis scoring, collagen quantification, and gene expression at 21 days, and less PH by right ventricular systolic pressure and pulmonary arteriole medial wall thickening at 28 days. In wild-type mice, macrophages, lymphocytes, neutrophils, proinflammatory cytokines, and protein increased in BALF on Day 7 and/or 21. In R213G mice, total BALF cell counts increased on Day 7 but resolved by 21 days. At 1 or 3 days, BALF pro- and antiinflammatory cytokines and BALF protein were higher in R213G mice, resolving by 21 days. We conclude that the redistribution of SOD3 as a result of the R213G single-nucleotide polymorphism protects mice from bleomycin-induced fibrosis and secondary PH by improved resolution of alveolar inflammation.


Assuntos
Pneumonia/complicações , Pneumonia/genética , Polimorfismo de Nucleotídeo Único/genética , Fibrose Pulmonar/complicações , Fibrose Pulmonar/genética , Superóxido Dismutase/genética , Células Epiteliais Alveolares/metabolismo , Animais , Bleomicina , Líquido da Lavagem Broncoalveolar , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Pneumonia/sangue , Pneumonia/enzimologia , Pneumonia/fisiopatologia , Fibrose Pulmonar/sangue , Fibrose Pulmonar/enzimologia , Fibrose Pulmonar/fisiopatologia , Superóxido Dismutase/sangue , Remodelação Vascular
7.
J Physiol ; 593(2): 415-30, 2015 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-25630262

RESUMO

Raphé-derived serotonin (5-HT) and thyrotropin-releasing hormone (TRH) play important roles in fundamental, homeostatic control systems such as breathing and specifically the ventilatory CO2 chemoreflex. Brown Norway (BN) rats exhibit an inherent and severe ventilatory insensitivity to hypercapnia but also exhibit relatively normal ventilation at rest and during other conditions, similar to multiple genetic models of 5-HT system dysfunction in mice. Herein, we tested the hypothesis that the ventilatory insensitivity to hypercapnia in BN rats is due to altered raphé gene expression and the consequent deficiencies in raphé-derived neuromodulators such as TRH. Medullary raphé transcriptome comparisons revealed lower expression of multiple 5-HT neuron-specific genes in BN compared to control Dahl salt-sensitive rats, predictive of reduced central nervous system monoamines by bioinformatics analyses and confirmed by high-performance liquid chromatography measurements. In particular, raphé Trh mRNA and peptide levels were significantly reduced in BN rats, and injections of the stable TRH analogue Taltirelin (TAL) stimulated breathing dose-dependently, with greater effects in BN versus control Sprague-Dawley rats. Importantly, TAL also effectively normalized the ventilatory CO2 chemoreflex in BN rats, but TAL did not affect CO2 sensitivity in control Sprague-Dawley rats. These data establish a molecular basis of the neuromodulatory deficiency in BN rats, and further suggest an important functional role for TRH signalling in the mammalian CO2 chemoreflex.


Assuntos
Hipercapnia/metabolismo , Núcleos da Rafe/metabolismo , Hormônio Liberador de Tireotropina/metabolismo , Transcriptoma , Animais , Dióxido de Carbono/farmacologia , Hipercapnia/genética , Neurotransmissores/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Núcleos da Rafe/efeitos dos fármacos , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Reflexo , Serotonina/metabolismo , Especificidade da Espécie , Hormônio Liberador de Tireotropina/análogos & derivados , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/farmacologia
8.
Anesthesiology ; 118(2): 350-60, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23287707

RESUMO

INTRODUCTION: Previously observed increased sensitivity to noxious stimulation in the Dahl salt-sensitive rat strain (SS/JrHsdMcwi, abbreviated as SS) compared to Brown Norway rats (BN/NhsdMcwi abbreviated as BN) is mediated by genes on a single chromosome. The current study used behavioral and electrocortical data to determine if differences also exist between SS and BN rats in loss of consciousness. METHODS: Behavioral responses, including loss of righting, (a putative index of consciousness) and concurrent electroencephalogram recordings, in 12 SS and BN rats were measured during isoflurane at inhaled concentrations of 0, 0.3, 0.6, 0.8, 1.0 and 1.2%. RESULTS: In SS compared to BN rats, the mean ± SEM EC50 for righting was significantly less (0.65 ± 0.01% vs. 0.74 ± 0.02% inhaled isoflurane) and delta fraction in parietal electroencephalogram was enhanced 50-100% at all isoflurane levels during emergence. The frequency decay constant of an exponential fit of the parietal electroencephalogram spectrum graphed as a function of isoflurane level was three times less steep (mean ± SEM slope -57 ± 13 vs. -191 ± 38) and lower at each level of isoflurane in SS versus BN rats (i.e., shifted toward low frequency activity). Electroencephalogram differences between strains were larger during emergence than induction. CONCLUSIONS: Sensitivity is higher in SS compared to BN rats leading to unconsciousness at lower levels of isoflurane. This supports using additional strains in this animal model to study the genetic basis for differences in anesthetic action on mechanisms of consciousness. Moreover, induction and emergence appear to involve distinct pathways.


Assuntos
Anestesia por Inalação , Anestésicos Inalatórios , Eletroencefalografia , Isoflurano , Inconsciência/induzido quimicamente , Inconsciência/genética , Algoritmos , Anestésicos Inalatórios/sangue , Animais , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eletrodos Implantados , Isoflurano/sangue , Masculino , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos Dahl , Especificidade da Espécie
9.
Function (Oxf) ; 4(5): zqad043, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37609445

RESUMO

Non-enzymatic activation of renin via its interaction with prorenin receptor (PRR) has been proposed as a key mechanism of local renin-angiotensin system (RAS) activation. The presence of renin and angiotensinogen has been reported in the rostral ventrolateral medulla (RVLM). Overactivation of bulbospinal neurons in the RVLM is linked to hypertension (HTN). Previous studies have shown that the brain RAS plays a role in the pathogenesis of the deoxycorticosterone (DOCA)-salt HTN model. Thus, we hypothesized that PRR in the RVLM is involved in the local activation of the RAS, facilitating the development of DOCA-salt HTN. Selective PRR ablation targeting the RVLM (PRRRVLM-Null mice) resulted in an unexpected sex-dependent and biphasic phenotype in DOCA-salt HTN. That is, PRRRVLM-Null females (but not males) exhibited a significant delay in achieving maximal pressor responses during the initial stage of DOCA-salt HTN. Female PRRRVLM-Null subsequently showed exacerbated DOCA-salt-induced pressor responses during the "maintenance" phase with a maximal peak at 13 d on DOCA-salt. This exacerbated response was associated with an increased sympathetic drive to the resistance arterioles and the kidney, exacerbated fluid and sodium intake and output in response to DOCA-salt, and induced mobilization of fluids from the intracellular to extracellular space concomitant with elevated vasopressin. Ablation of PRR suppressed genes involved in RAS activation and catecholamine synthesis in the RVLM but also induced expression of genes involved in inflammatory responses. This study illustrates complex and sex-dependent roles of PRR in the neural control of BP and hydromineral balance through autonomic and neuroendocrine systems. Graphical abstract.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Receptor de Pró-Renina , Animais , Feminino , Camundongos , Pressão Sanguínea , Hipertensão/genética , Receptor de Pró-Renina/genética , Receptores de Superfície Celular , Renina/genética , Cloreto de Sódio , Vasoconstritores
10.
Cell Rep ; 42(8): 112935, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37540598

RESUMO

Resting metabolic rate (RMR) adaptation occurs during obesity and is hypothesized to contribute to failed weight management. Angiotensin II (Ang-II) type 1 (AT1A) receptors in Agouti-related peptide (AgRP) neurons contribute to the integrative control of RMR, and deletion of AT1A from AgRP neurons causes RMR adaptation. Extracellular patch-clamp recordings identify distinct cellular responses of individual AgRP neurons from lean mice to Ang-II: no response, inhibition via AT1A and Gαi, or stimulation via Ang-II type 2 (AT2) receptors and Gαq. Following diet-induced obesity, a subset of Ang-II/AT1A-inhibited AgRP neurons undergo a spontaneous G-protein "signal switch," whereby AT1A stop inhibiting the cell via Gαi and instead begin stimulating the cell via Gαq. DREADD-mediated activation of Gαi, but not Gαq, in AT1A-expressing AgRP cells stimulates RMR in lean and obese mice. Thus, loss of AT1A-Gαi coupling within the AT1A-expressing AgRP neuron subtype represents a molecular mechanism contributing to RMR adaptation.


Assuntos
Neurônios , Obesidade , Receptor Tipo 1 de Angiotensina , Animais , Camundongos , Proteína Relacionada com Agouti/metabolismo , Angiotensina II/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo
11.
J Physiol ; 590(14): 3335-47, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22615434

RESUMO

Brown Norway (BN) rats have a relatively specific deficit in CO2 sensitivity. This deficit could be due to an abnormally weak carotid body contribution to CO2 sensitivity. Accordingly, we tested the hypothesis that CBD would have less of an effect on eupnoeic breathing and CO2 sensitivity in the BN rats compared to other rat strains.We measured ventilation and blood gases at rest (eupnoea) and during hypoxia (FIO2 =0.12) or hypercapnia (FICO2 =0.07) before and up to 23 days after bilateral or Sham CBD in BN, Sprague­Dawley (SD) and Dahl Salt-Sensitive (SS) rats. In all three rat strains, CBD elicited eupnoeic hypoventilation (PaCO2 +8.7­11.0 mmHg) 1­2 days post-CBD (P <0.05), and attenuated ventilatory responses to hypoxia (P <0.05) and venous sodium cyanide (NaCN; P<0.05), while sham CBD had no effect on resting breathing, blood gases or chemoreflexes (P >0.05). In contrast, CBD had no effect on CO2 sensitivity (˙VE/PaCO2) in all strains (P>0.05). Eupnoeic PaCO2 returned to pre-CBD values within 15­23 days post-CBD. Thus, the effects of CBD in rats (1) further support an important role for the carotid bodies in eupnoeic blood gas regulation, (2) suggest that the carotid bodies are not a major determinant of CO2 sensitivity in rats, and (3) may not support the concept of an interaction among the peripheral and central chemoreceptors in rats.


Assuntos
Corpo Carotídeo/fisiologia , Ventilação Pulmonar/fisiologia , Reflexo/fisiologia , Animais , Dióxido de Carbono/sangue , Corpo Carotídeo/cirurgia , Denervação , Hipercapnia/fisiopatologia , Hipóxia/fisiopatologia , Masculino , Oxigênio/sangue , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Especificidade da Espécie
12.
Front Synaptic Neurosci ; 14: 910820, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844900

RESUMO

Acute regulation of CO2 and pH homeostasis requires sensory feedback from peripheral (carotid body) and central (central) CO2/pH sensitive cells - so called respiratory chemoreceptors. Subsets of brainstem serotonin (5-HT) neurons in the medullary raphe are CO2 sensitive or insensitive based on differences in embryonic origin, suggesting these functionally distinct subpopulations may have unique transcriptional profiles. Here, we used Patch-to-Seq to determine if the CO2 responses in brainstem 5-HT neurons could be correlated to unique transcriptional profiles and/or unique molecular markers and pathways. First, firing rate changes with hypercapnic acidosis were measured in fluorescently labeled 5-HT neurons in acute brainstem slices from transgenic, Dahl SS (SSMcwi) rats expressing T2/ePet-eGFP transgene in Pet-1 expressing (serotonin) neurons (SS ePet1-eGFP rats). Subsequently, the transcriptomic and pathway profiles of CO2 sensitive and insensitive 5-HT neurons were determined and compared by single cell RNA (scRNAseq) and bioinformatic analyses. Low baseline firing rates were a distinguishing feature of CO2 sensitive 5-HT neurons. scRNAseq of these recorded neurons revealed 166 differentially expressed genes among CO2 sensitive and insensitive 5-HT neurons. Pathway analyses yielded novel predicted upstream regulators, including the transcription factor Egr2 and Leptin. Additional bioinformatic analyses identified 6 candidate gene markers of CO2 sensitive 5-HT neurons, and 2 selected candidate genes (CD46 and Iba57) were both expressed in 5-HT neurons determined via in situ mRNA hybridization. Together, these data provide novel insights into the transcriptional control of cellular chemoreception and provide unbiased candidate gene markers of CO2 sensitive 5-HT neurons. Methodologically, these data highlight the utility of the patch-to-seq technique in enabling the linkage of gene expression to specific functions, like CO2 chemoreception, in a single cell to identify potential mechanisms underlying functional differences in otherwise similar cell types.

13.
Front Physiol ; 13: 855054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283781

RESUMO

Cardiovascular disease represents the leading cause of death in the United States, and metabolic diseases such as obesity represent the primary impediment to improving cardiovascular health. Rodent (mouse and rat) models are widely used to model cardiometabolic disease, and as a result, there is increasing interest in the development of accurate and precise methodologies with sufficiently high resolution to dissect mechanisms controlling cardiometabolic physiology in these small organisms. Further, there is great utility in the development of centralized core facilities furnished with high-throughput equipment configurations and staffed with professional content experts to guide investigators and ensure the rigor and reproducibility of experimental endeavors. Here, we outline the array of specialized equipment and approaches that are employed within the Comprehensive Rodent Metabolic Phenotyping Core (CRMPC) and our collaborating laboratories within the Departments of Physiology, Pediatrics, Microbiology & Immunology, and Biomedical Engineering at the Medical College of Wisconsin (MCW), for the detailed mechanistic dissection of cardiometabolic function in mice and rats. We highlight selected methods for the analysis of body composition and fluid compartmentalization, electrolyte accumulation and flux, energy accumulation and flux, physical activity, ingestive behaviors, ventilatory function, blood pressure, heart rate, autonomic function, and assessment and manipulation of the gut microbiota. Further, we include discussion of the advantages and disadvantages of these approaches for their use with rodent models, and considerations for experimental designs using these methods.

14.
Compr Physiol ; 11(2): 1653-1677, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33792908

RESUMO

The development of the control of breathing begins in utero and continues postnatally. Fetal breathing movements are needed for establishing connectivity between the lungs and central mechanisms controlling breathing. Maturation of the control of breathing, including the increase of hypoxia chemosensitivity, continues postnatally. Insufficient oxygenation, or hypoxia, is a major stressor that can manifest for different reasons in the fetus and neonate. Though the fetus and neonate have different hypoxia sensing mechanisms and respond differently to acute hypoxia, both responses prevent deviations to respiratory and other developmental processes. Intermittent and chronic hypoxia pose much greater threats to the normal developmental respiratory processes. Gestational intermittent hypoxia, due to maternal sleep-disordered breathing and sleep apnea, increases eupneic breathing and decreases the hypoxic ventilatory response associated with impaired gasping and autoresuscitation postnatally. Chronic fetal hypoxia, due to biologic or environmental (i.e. high-altitude) factors, is implicated in fetal growth restriction and preterm birth causing a decrease in the postnatal hypoxic ventilatory responses with increases in irregular eupneic breathing. Mechanisms driving these changes include delayed chemoreceptor development, catecholaminergic activity, abnormal myelination, increased astrocyte proliferation in the dorsal respiratory group, among others. Long-term high-altitude residents demonstrate favorable adaptations to chronic hypoxia as do their offspring. Neonatal intermittent hypoxia is common among preterm infants due to immature respiratory systems and thus, display a reduced drive to breathe and apneas due to insufficient hypoxic sensitivity. However, ongoing intermittent hypoxia can enhance hypoxic sensitivity causing ventilatory overshoots followed by apnea; the number of apneas is positively correlated with degree of hypoxic sensitivity in preterm infants. Chronic neonatal hypoxia may arise from fetal complications like maternal smoking or from postnatal cardiovascular problems, causing blunting of the hypoxic ventilatory responses throughout at least adolescence due to attenuation of carotid body fibers responses to hypoxia with potential roles of brainstem serotonin, microglia, and inflammation, though these effects depend on the age in which chronic hypoxia initiates. Fetal and neonatal intermittent and chronic hypoxia are implicated in preterm birth and complicate the respiratory system through their direct effects on hypoxia sensing mechanisms and interruptions to the normal developmental processes. Thus, precise regulation of oxygen homeostasis is crucial for normal development of the respiratory control network. © 2021 American Physiological Society. Compr Physiol 11:1653-1677, 2021.


Assuntos
Nascimento Prematuro , Síndromes da Apneia do Sono , Feminino , Humanos , Hipóxia , Recém-Nascido , Recém-Nascido Prematuro , Pulmão , Oxigênio , Gravidez
15.
Physiol Rep ; 9(13): e14946, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228894

RESUMO

Serotonin (5-HT) influences brain development and has predominantly excitatory neuromodulatory effects on the neural respiratory control circuitry. Infants that succumb to sudden infant death syndrome (SIDS) have reduced brainstem 5-HT levels and Tryptophan hydroxylase 2 (Tph2). Furthermore, there are age- and sex-dependent risk factors associated with SIDS. Here we utilized our established Dark Agouti transgenic rat lacking central serotonin KO to test the hypotheses that CNS 5-HT deficiency leads to: (1) high mortality in a sex-independent manner, (2) age-dependent alterations in other CNS aminergic systems, and (3) age-dependent impairment of chemoreflexes during post-natal development. KO rat pups showed high neonatal mortality but not in a sex-dependent manner and did not show altered hypoxic or hypercapnic ventilatory chemoreflexes. However, KO rat pups had increased apnea-related metrics during a specific developmental age (P12-16), which were preceded by transient increases in dopaminergic system activity (P7-8). These results support and extend the concept that 5-HT per se is a critical factor in supporting respiratory control during post-natal development.


Assuntos
Animais Recém-Nascidos/fisiologia , Fenômenos Fisiológicos Respiratórios , Serotonina/deficiência , Fatores Etários , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/metabolismo , Temperatura Corporal , Tronco Encefálico/química , Feminino , Técnicas de Silenciamento de Genes , Hipercapnia/etiologia , Hipercapnia/fisiopatologia , Hipóxia/etiologia , Hipóxia/fisiopatologia , Masculino , Mortalidade , Ratos , Ratos Transgênicos , Serotonina/análise , Serotonina/fisiologia , Fatores Sexuais
16.
Compr Physiol ; 10(2): 767-783, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32163201

RESUMO

Single-cell sequencing measures the sequence information from individual cells using optimized single-cell isolation protocols and next-generation sequencing technologies. Recent advancement in single-cell sequencing has transformed biomedical research, providing insights into diverse biological processes such as mammalian development, immune system function, cellular diversity and heterogeneity, and disease pathogenesis. In this article, we introduce and describe popular commercial platforms for single-cell RNA sequencing, general workflow for data analysis, repositories and databases, and applications for these approaches in biomedical research. © 2020 American Physiological Society. Compr Physiol 10:767-783, 2020.


Assuntos
Pesquisa Biomédica/métodos , Biologia Computacional/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma , Animais , Pesquisa Biomédica/tendências , Humanos
17.
Front Synaptic Neurosci ; 15: 1225731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350930
18.
Elife ; 72018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30350782

RESUMO

The neurotransmitter serotonin helps to co-ordinate the respiratory and cardiovascular responses of newborns to oxygen deprivation.


Assuntos
Serotonina , Humanos , Recém-Nascido
19.
Physiol Rep ; 6(5)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29516654

RESUMO

We have identified a critical period of respiratory development in rats at postnatal days P12-13, when inhibitory influence dominates and when the response to hypoxia is at its weakest. This critical period has significant implications for Sudden Infant Death Syndrome (SIDS), the cause of which remains elusive. One of the known risk factors for SIDS is prematurity. A common intervention used in premature infants is hyperoxic therapy, which, if prolonged, can alter the ventilatory response to hypoxia and induce sustained inhibition of lung alveolar growth and pulmonary remodeling. The goal of this study was to test our hypothesis that neonatal hyperoxia from postnatal day (P) 0 to P10 in rat pups perturbs the critical period by altering the normal progression of neurochemical development in brain stem respiratory-related nuclei. An in-depth, semiquantitative immunohistochemical study was undertaken at P10 (immediately after hyperoxia and before the critical period), P12 (during the critical period), P14 (immediately after the critical period), and P17 (a week after the cessation of hyperoxia). In agreement with our previous findings, levels of cytochrome oxidase, brain-derived neurotrophic factor (BDNF), TrkB (BDNF receptor), and several serotonergic proteins (5-HT1A and 2A receptors, 5-HT synthesizing enzyme tryptophan hydroxylase [TPH], and serotonin transporter [SERT]) all fell in several brain stem respiratory-related nuclei during the critical period (P12) in control animals. However, in hyperoxic animals, these neurochemicals exhibited a significant fall at P14 instead. Thus, neonatal hyperoxia delayed but did not eliminate the critical period of postnatal development in multiple brain stem respiratory-related nuclei, with little effect on the nonrespiratory cuneate nucleus.


Assuntos
Tronco Encefálico/metabolismo , Hiperóxia/metabolismo , Respiração , Animais , Tronco Encefálico/crescimento & desenvolvimento , Tronco Encefálico/fisiologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Hiperóxia/etiologia , Masculino , Oxigenoterapia/efeitos adversos , Ratos , Ratos Sprague-Dawley , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
20.
Exp Neurol ; 287(Pt 2): 102-112, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27132994

RESUMO

The regulation of blood gases in mammals requires precise feedback mechanisms including chemoreceptor feedback from the carotid bodies. Carotid body denervation (CBD) leads to immediate hypoventilation (increased PaCO2) in adult rats, but over a period of days and weeks ventilation normalizes due in part to central (brain) mechanisms. Here, we tested the hypothesis that functional ventilatory recovery following CBD correlated with significant shifts in medullary raphe gene expression of molecules/pathways associated with known or novel forms of neuroplasticity. Tissue punches were obtained from snap frozen brainstems collected from rats 1-2days or 14-15days post-sham or post-bilateral CBD surgery (verified by physiologic measurements), and subjected to mRNA sequencing to identify, quantify, and statistically compare gene expression level differences among these groups of rats. We found the greatest number of gene expression changes acutely after CBD (154 genes), with fewer changes in the weeks after CBD (69-80 genes) and the fewest changes in expression among the time control groups (39 genes). Little or no changes were observed for multiple genes associated with serotonin- or glutamate receptor-dependent forms of neuroplasticity. However, an unbiased assessment of gene expression changes using a bioinformatics pathway analysis highlighted multiple changes in gene expression in signaling pathways associated with immune function. These included several growth factors and cytokines associated with peripheral and innate immune systems. Thus, these medullary raphe gene expression data support a role for immune-related signaling pathways in the functional restoration of blood gas control after CBD, but little or no role for serotonin- or glutamate receptor-mediated plasticity.


Assuntos
Corpo Carotídeo/fisiologia , Denervação , Regulação da Expressão Gênica/fisiologia , Núcleos da Rafe/metabolismo , Recuperação de Função Fisiológica/fisiologia , Respiração , Serotonina/metabolismo , Animais , Corpo Carotídeo/cirurgia , Modelos Animais de Doenças , Masculino , Plasticidade Neuronal/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa