RESUMO
Sediment management along engineered river systems includes dredging operations and sediment deposition in the sea (capping) or on land. Thus, determining the ecotoxicological risk gradient associated with river sediments is critical. In this study, we investigated sediment samples along the Rhône River (France) and conducted environmental risk assessment tests with the idea to evaluate them in the future for deposit on soil. Based on an on-land deposit scenario, the capacity of the sediment samples from four sites (LDB, BER, GEC, and TRS) to support vegetation was evaluated by characterising the physical and chemical parameters (pH, conductivity, total organic carbon, grain size, C/N, potassium, nitrogen, and selected pollutants), including polychlorinated biphenyls (PCBs) and metal trace elements. All tested sediments were contaminated by metallic elements and PCBs as follows: LDB > GEC > TRS > BER, but only LDB had levels higher than the French regulatory threshold S1. Sediment ecotoxicity was then assessed using acute (plant germination and earthworm avoidance) and chronic (ostracod test and earthworm reproduction) bioassays. Two of the tested plant species, Lolium perenne (ray grass) and Cucurbita pepo (zucchini), were highly sensitive to sediment phytotoxicity. Acute tests also showed significant inhibition of germination and root growth, with avoidance by Eisenia fetida at the least contaminated sites (TRS and BER). Chronic bioassays revealed that LDB and TRS sediment were significantly toxic to E. fetida and Heterocypris incongruens (Ostracoda), and GEC sediment was toxic for the latter organism. In this on-land and spatialised deposit scenario, river sediment from the LDB site (Lake Bourget marina) presented the highest potential toxicity and required the greatest attention. However, low contamination levels can also lead to potential toxicity (as demonstrated for GEC and TRS site), underlining the importance of a multiple test approach for this scenario.
Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Poluentes Químicos da Água , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/análise , Rios/química , Ecotoxicologia , Solo , Poluentes Químicos da Água/análise , Sedimentos GeológicosRESUMO
Fluvial suspended particulate matter (SPM) fluxes transport large amounts of contaminants that can affect water quality and river ecosystems. To better manage these inputs in river systems, it is essential to identify SPM and sediment sources. Many studies have applied a fingerprinting method based on using metals integrated into a numerical mixing model to estimate source contributions in a watershed. Most fingerprinting studies use contemporary SPM to trace historical inputs, whereas their metal concentrations were modified over time due to anthropogenic inputs. Moreover, total concentrations of these properties are subject to change due to diagenetic processes occurring in stored sediments. The aim of this study was to assess the relevance of using the non-reactive fraction of metals (i.e. metals and metalloids) in fingerprinting studies to estimate the historical contributions of SPM tributary inputs in a sediment core. To assess metal concentrations in the 'conservative' (i.e. non-reactive) fraction, SPM (samples of sources) and sediment core layers (targeted sediments) were subjected to total mineralization and soft extraction, and the non-reactive fraction was obtained by calculating the difference between the two extractions. This approach was applied on a sediment core from the Upper Rhône River (France), using geochemical signature in contemporary SPM of three major tributaries. We showed that the non-reactive fraction retains a higher number of metals in the range test for the deepest layers, which are characterized by significant anthropogenic inputs. Through apportionment modelling using Monte Carlo simulation, we demonstrated that the tributary contributions computed using the non-reactive fraction are more consistent with historical flood and water flow data and have lower uncertainties than with the total fraction. Working with the non-reactive fraction made it possible to decipher historical inputs of SPM using contemporary SPM samples. This approach enables robust identification of sub-catchment areas liable to provide large quantities of SPM. The non-reactive fraction can be used in a variety of environmental conditions and at various spatial and temporal scales to provide a robust quantification of sediment sources.
Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , França , Rios , Poluentes Químicos da Água/análiseRESUMO
The internal sedimentary phosphorus (P) load of aquatic systems is able to support eutrophication, especially in dam-reservoir systems where sedimentary P stock is high and where temporary anaerobic conditions occur. The aim of this study therefore is to examine the response of sedimentary P exposed to redox oscillations. Surface sediments collected in the Champsanglard dam-reservoir (on the Creuse River, France) were subjected to two aerobic phases (10 and 12 days) alternated with two anaerobic periods (21 and 27 days) through batch incubations. The studied sediment contained 77 ± 3 µmol/g DW of P, mainly associated with the ascorbate fraction (amorphous Fe/Mn oxyhydroxides). The used sediment was rich in organic matter (OM) (21% ± 1%) with primarily allochthone signature. Our results showed that redox oscillations enhance dissolved inorganic phosphorus release at sediment/water interface. During the first anaerobic stage, the P release was mainly controlled by the dissolution/precipitation of iron minerals. The more pronounced increase of P release during the second anaerobic stage (44%) was due to various mechanisms related to the change in quality of dissolved organic matter (DOM), namely a higher SUVA254 and humification indices. The release of more refractory DOM (rDOM) served to lower the microbial metabolism activity, possibly favored iron oxyhydroxide aggregation and thus limiting iron reduction. In addition, rDOM is able to compete for mineral P sorption sites, leading to a greater P release. In reservoir with predominant allochthone OM input, the release of more aromatic DOM therefore plays an important role in P mobility.
Assuntos
Monitoramento Ambiental , Lagos/química , Fósforo/química , Eutrofização , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Oxirredução , Oxigênio/química , Fósforo/análiseRESUMO
Emission-control policies have been implemented in Europe and North America since the 1990s for polychlorodibenzodioxins (PCDDs) and furans (PCDFs). To assess the effect of these policies on temporal trends and spatial patterns for these compounds in a large European river system, sediment cores were collected in seven depositional areas along the Rhone River in France, dated, and analyzed for PCDDs and PCDFs. Results show concentrations increase in the downstream direction and have decreased temporally at all sites during the last two decades, with an average decrease of 83% from 1992 to 2010. The time for a 50% decrease in concentrations (t1/2) averaged 6.9±2.6 and 9.1±2.9 years for the sum of measured PCDDs and PCDFs, respectively. Congener patterns are similar among cores and indicate dominance of regional atmospheric deposition and possibly weathered local sources. Local sources are clearly indicated at the most downstream site, where concentrations of the most toxic dioxin, TCDD, are about 2 orders of magnitude higher than at the other six sites. The relatively steep downward trends attest to the effects of the dioxin emissions reduction policy in Europe and suggest that risks posed to aquatic life in the Rhone River basin from dioxins and furans have been greatly reduced.
Assuntos
Dioxinas/análise , Rios/química , Poluentes Químicos da Água/análise , França , Furanos/análise , Dibenzodioxinas Policloradas/análiseRESUMO
The assessment of microplastic (MP) pollution in urban areas is essential considering its abundance in freshwater, particularly due to urban wet weather discharge. The precise sources of MPs must be identified to better understand its characteristics. This study examines the relationship between MP pollution in detention basin sediments and land use in the investigated catchments. The study of stormwater management infrastructure, mainly in detention basins, has enabled the quantification of MP abundance in sediments conveyed by stormwater in urban areas. Sediment sampling was conducted in ten detention basins and one combined sewer overflow (CSO) structure in the Lyon metropolitan area, France. These basins correspond to stormwater outlets of representative urban catchment areas. MP extraction involves densimetric separation and organic matter degradation. MPs were then characterized using micro-Fourier infrared spectroscopy and siMPle software. This protocol identified MPs between 50 and 500 µm in the study sites. This study highlights the high abundance in the collected sediment samples, ranging from 2,525 to 1,218,82 MP kg-1 by dry weight sediment. The MPs found have a median size around 115 µm, making them very small MPs that are mainly composed of polypropylene followed by polyethylene and polystyrene or polyethylene terephthalate. The abundance of MPs in sediments is associated with the land use type. Catchments in predominantly industrial and commercial zones were more significantly polluted with MPs compared with those in predominantly agricultural or heterogeneous zones. Finally, statistical analyses revealed links between sedimentary and urban parameters and MPs concentrations. Several recommendations are given for future research, notably concerning the analyzing of stormwater sediments to understand the sources of MP pollution.
Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Plásticos/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodosRESUMO
Platinum (Pt) is a Technology Critical Element (TCE) which, since the 1990s, has been mainly used in the industry in catalytic converters for automobile emission control. Previous studies have shown Pt contamination of road-side sediments and surface sediments in urban rivers and lakes but few of them have addressed temporal variations. The present work presents historical Pt concentration trends in 137Cs-dated sediment cores from floodplains or secondary channels at the outlets of three major French watersheds (Loire, Rhone, and Seine Rivers) covering the past â¼110 years, i.e., from the 1910s to 2021. Platinum baseline levels in the sediment were estimated for the Loire River (0.76 ± 0.22 µg kg-1 for the period â¼1910-â¼1955) and the Rhone River (1.64 ± 0.41 µg kg-1), and historical Pt variations seem to reflect variations in hydrodynamics and grain size composition. Since the early 2000s, Pt concentrations in the Loire and the Rhone River sediments tend to increase (>2.5 µg kg-1) and were attributed to the use of car catalytic converters, an emerging technology since the 1990s using >50 % of European Pt demand. High and variable historical Pt concentrations (up to 14.6 µg kg-1) in the Seine River sediments may reflect legacy Pt sources due to former anthropogenic activities in this watershed, such as the use of Pt-based catalysts for petroleum refinery since the end of the 1940s, coal handling and precious metals refining, probably concealing the likely presence of an emerging traffic-related Pt signal. This first comparison of historical Pt concentration trends in sediments from contrasting watersheds allows to distinguish signals originating from different natural and anthropogenic sources (background level, historical sources, road traffic).
RESUMO
137Cs is a long-lived man-made radionuclide introduced in the environment worldwide at the early beginning of the nuclear Era during atmospheric nuclear testing's followed by the civil use of nuclear energy. Atmospheric fallout deposition of this major artificial radionuclide was reconstructed at the scale of French large river basins since 1945, and trajectories in French nuclearized rivers were established using sediment coring. Our results show that 137Cs contents in sediments of the studied rivers display a large spatial and temporal variability in response to the various anthropogenic pressures exerted on their catchment. The Loire, Rhone, and Rhine rivers were the most affected by atmospheric fallout from the global deposition from nuclear tests. Rhine and Rhone also received significant fallout from the Chernobyl accident in 1986 and recorded significant 137Cs concentrations in their sediments over the 1970-1985 period due to the regulatory releases from the nuclear industries. The Meuse River was notably impacted in the early 1970s by industrial releases. In contrast, the Seine River display the lowest 137Cs concentrations regardless of the period. All the rivers responded similarly over time to atmospheric fallout on their catchment, underlying a rather homogeneous resilience capacity of these river systems to this source of contamination.
RESUMO
Since 1945, a large amount of heterogeneous data has been acquired to survey river sediment quality, especially concerning regulatory metals such as Cd, Cr, Cu, Hg, Ni, Pb, and Zn. Large-scale syntheses are critical to assess the effectiveness of public regulations and the resiliency of the river systems. Accordingly, this data synthesis proposes a first attempt to decipher spatio-temporal trends of metal contamination along seven major continental rivers in Western Europe (France, Belgium, Germany, and the Netherlands). A large dataset (>12,000 samples) from various sediment matrices (bed and flood deposits - BFD, suspended particulate matter - SPM, dated sediment cores - DSC) was set up based on monitoring and scientific research from the 1950s to the 2010s. This work investigates the impact of analytical protocols (matrix sampling, fractionation, extraction), location and time factors (related to geology and anthropogenic activities) on metal concentration trends. Statistical analyses highlight crossed-interactions in space and time, as well as between sediment matrices (metal concentrations in SPM ≃ DSC > BFD) and extraction procedures (also related to river lithology). Major spatio-temporal trends are found along several rivers such as (i) an increase of metal concentrations downstream of the main urban industrial areas (e.g. Paris-Rouen corridor on the Seine River, Bonn-Duisburg corridor on the Rhine River), (ii) a long-term influence of former mining areas located in crystalline zones, releasing heavily contaminated sediments for decades (Upper Loire River, Middle Meuse section), (iii) a decrease of metal concentrations since the 1970s (except for Cr and Ni, rather low and stable over time). The improvement of sediment quality in the most recent years in Europe reflects a decisive role of environment policies, such as more efficient wastewater treatments, local applications of the Water Framework Directive and urban industrial changes in the river valleys.
Assuntos
Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Rios , Poluentes Químicos da Água/análiseRESUMO
Brominated flame retardants (BFRs) are anthropogenic compounds that are ubiquitous in most manufactured goods. Few legacy BFRs have been recognised as persistent organic pollutants (POPs) and have been prohibited since the 2000s. However, most BFRs continue to be used despite growing concerns regarding their toxicity; they are often referred to as novel BFRs (nBFRs). While environmental contamination due to chlorinated POPs has been extensively investigated, the levels and spatiotemporal trends of BFRs are comparatively understudied. This study aims to reconstruct the temporal trends of both legacy and novel BFRs at the scale of a river corridor. To this end, sediment cores were sampled from backwater areas in four reaches along the Rhône River. Age-depth models were established for each of them. Polychlorinated biphenyls (PCBs), legacy BFRs (polybrominated diphenyl ethers - PBDEs, polybrominated biphenyls - PBBs and hexabromocyclododecane - HBCDDs) and seven nBFRs were quantified. Starting from the 1970s, a decreasing contamination trend was observed for PCBs. Temporal trends for legacy BFRs revealed that they reached peak concentrations from the mid-1970s to the mid-2000s, and stable concentrations by the mid-2010s. Additionally, individual concentrations of nBFRs were two to four orders of magnitude lower than those of legacy BFRs. Their temporal trends revealed that they appeared in the environment in the 1970s and 1980s. The concentrations of most of these nBFRs have not decreased in recent years. Thus, there is a need to comprehend the sources, contamination load, repartition in the environment, and toxicity of nBFRs before their concentrations reach hazardous levels.
Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Monitoramento Ambiental , Retardadores de Chama/análise , França , Éteres Difenil Halogenados/análise , Hidrocarbonetos Bromados/análise , RiosRESUMO
In this study, we explore the variability of sedimentation conditions (e.g., grain-size, accumulation rate, contamination) according to fluvial depositional environments. Indeed, sediment cores are commonly used as archives of natural and anthropogenic activities in hydrosystems, but their interpretation is often complex, especially in a fluvial context where many factors may affect the quality, continuity, and resolution of the record. It is therefore critical to thoroughly understand the nature and dynamics of an environment in which a sediment core is sampled to be able to interpret it. To that end, four depositional environments from a bypassed reach of the Rhône River were comparatively investigated through geophysics in order to assess the range of sedimentation conditions: a floodplain, a semi-active secondary channel, an active secondary channel, and a dam reservoir. Sediment cores were retrieved from each environment and thoroughly characterised (e.g., grain-size, Total Organic Carbon, organic contaminants). Robust age-depth models were elaborated for each core based on 137Cs, 210Pbex, and Persistent Organic Pollutants (POPs) trends. The results show that each depositional environment recorded a different time-period, and therefore different contamination levels and trends. In particular, a shift from polychlorinated biphenyls (PCBs) to polybrominated diphenyl ethers (PBDEs) as the predominant POP in the sediments can be observed, the tipping point being set in the 1970s. Two types of infrastructure-induced legacy sediments related to two periods of river engineering in the reach were also identified using grain-size analysis. The combination of geophysical methods (Ground Penetrating Radar) and sediment cores is therefore confirmed as a relevant methodology that should be promoted in fluvial contexts in order to reconstruct the sedimentary evolution of fluvial corridors. The study also highlights the challenges of dating recent fluvial sediments and proposes a multi-proxy dating methodology using POPs contamination trends.
RESUMO
The missing Electronic Supplementary Material in the original paper is included in this paper.
RESUMO
Dam construction leads to both sediment discontinuities and the creation of internal phosphorus (P) loads in reservoirs capable of supporting eutrophication. Today, majority of large rivers are dammed and numerous of these infrastructures are constructed in cascade. However, few studies focus on the cumulative effect of the presence of dam on sediment P mobility and bioavailability in downstream reservoirs and rivers parts or throughout the continuum. The influence of three cascade dams has been studied herein on the sedimentary P distribution in surface bed sediments along a 17-km fluvial continuum of the Creuse River (Massif Central, France). The sediments (17 samples) were analyzed for their physical (grain size, specific surface area) and chemical (pH, contents of P, Fe, Al, Ca, Mn, organic matter (OM), and P fractionation) characteristics. Results indicated an amount of P 3 to 7 times higher in dam sediments (1.59 ± 0.51 mgP/g DW) than in free-flowing river sections (0.27 ± 0.11 mgP/g DW). Unexpectedly, sedimentary TP content did not decrease from the first to the third reservoir. The spatial variations of sediment characteristics between river and reservoirs were correlated with the retention of particles sized under 200 µm within the reservoirs. In reservoir sediment, P was mainly associated with the ascorbate fraction (P associated with the redox-sensitive Fe/Mn precipitates). Inside each dam reservoir, longitudinal variations of the sedimentary P distribution were mainly due to the increase of amorphous Fe precipitate content accumulated in fine sediments toward the dam, as characterized by a low Fe-Asc/P-Asc molar ratio. In the river sections, P distribution (mainly associated with HCl and ascorbate fractions) was not significantly influenced by cascade dams.
Assuntos
Monitoramento Ambiental , Fósforo , Poluentes Químicos da Água , França , Sedimentos GeológicosRESUMO
In European rivers, research and monitoring programmes have targeted metal pollution from bed and floodplain sediments since the mid-20th century by using various sampling and analysis protocols. We propose to characterise metal contamination trajectories since the 1960s based on the joint use of a large amount of data from dated cores and subsurface sediments along the Rhône River (ca. 512 km, Switzerland-France). For the reconstruction of spatio-temporal trends, enrichment factors (EF) and geo-accumulation (Igeo) approaches were compared. The latter index was preferred due to the recurrent lack of grain-size and lithogenic elements in the dataset. Local geochemical backgrounds were established near (1) the Subalps and (2) the Massif Central to consider the geological variability of the watershed. A high contamination (Igeo = 3-5) was found for Cd, Cu and Zn from upstream to downstream over the period 1980-2000. This pattern is consistent with long-term emissions from major cities and the nearby industrial areas of the Upper Rhône (Geneva, Arve Valley), and Middle Rhône (Lyon, Chemical Corridor, Gier Valley). Hotspots due to Cu and Zn leaching from vineyards, mining, and highway runoff were also identified, while Pb was especially driven by industrial sources. The recovery time of pollution in sediment varied according to the metals and was shorter upstream of Lyon (15-20 years) than downstream (30-40 years). More widely, it was faster on the Rhône than along other European rivers (e.g. Seine and Rhine). Finally, the ecotoxicological mixture risk of metal with Persistent Organic Pollutants (POPs) for sediment-dwelling organisms showed a medium "cocktail risk" dominated by metals upstream of Lyon, although it is enhanced due to POPs downstream, and southward to the delta and the Mediterranean Sea. Overall, this study demonstrates the heterogeneity of the contamination trends along large fluvial corridors such as the Rhône River.
Assuntos
Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental , França , Sedimentos Geológicos , Mar Mediterrâneo , Metais Pesados/análise , Suíça , Poluentes Químicos da Água/análiseRESUMO
Natural metal background levels in sediments are critical to assess spatial and temporal trends of contamination in hydrosystems and to manage polluted sediments. This is even more sensitive that multi-factors such as geogenic basement, depositional context, and past or long-term pollution can affect the level of metals in sediments. This article provides natural metal background levels and ancillary data (location, chronology, grain-size, total organic carbon - TOC) in pre-industrial sediments along the Rhône River (France). Two distinct areas were selected to take into account the geological variability of the watershed: the Dauphiné Lowlands (Upper Rhône River) and the Tricastin Floodplain (Middle Rhône River). On each area, the sediment cores were retrieved from palaeochannel sequences and the sampled sections were dated by radiocarbon from the Roman to the Modern Times (AD 3-1878). Regulatory metals (Al, Fe, Cd, Cr, Cu, Ni, Pb, and Zn) and other trace elements (Ba, Co, Li, Mg, Mn, Na, P, Sr, Ti, V) were analysed following both Aqua Regia (AR) and Total Extraction (TE) procedures. Classically, TE provides metal concentrations greater than AR because TE includes crystalline lattice, while AR is close to the potentially bio-accessible part of metals (used for ecotoxicological purposes). Due to the small number of samples and to the non-normal distribution of the results, a median-based approach was chosen to establish the geochemical background values and ranges (MGB) for each sample and area. These MGBs are valuable to identify pollution sources, to characterise a contamination (spread and timing), and to estimate the state of rivers regarding pollution legacy. Along the Rhône River, these two continental MGBs were used to reconstruct the metal geo-accumulation trajectories in river sediments from 1965 to 2018 [1].
RESUMO
Sedimentological and geochemical data were obtained for bed sediments from a tropical estuary environment in Vietnam in October 2014, January 2016, and November 2016. The data include grain-size distribution, percentage of clay, silt and sand, percentage of organic matter, concentration of total particulate phosphorus (TPP), concentration of particulate inorganic phosphorus (PIP), concentration of particulate organic phosphorus (POP), percentage of total nitrogen (TN), percentage of total carbon (TC), trace metals concentrations (V, Cr, Co, Ni, Cu, Zn, As, Mo, Cd, Pb) and major elements (Al, Fe, Mn). Geochemical indexes (Enrichment factor EF and Geo-accumulation Index I-geo) and sediment quality guideline (mean Effect Range Median quotients) were calculated.
RESUMO
Twenty-one sediment samples were taken from five dated sediment cores collected along the Rhône River from 2008 to 2011. A total of 17 polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), 7 polychlorinated biphenyls (PCBs), 8 polybrominated diphenyl ethers (PBDEs), 3 polybrominated biphenyls (PBBs), 3 hexabromocyclododecanes (HBCD) and 31 organochlorine pesticides (OCPs) were investigated to provide information on deposition dynamics in time and space, but also regarding the ecotoxicological risks associated with these contaminants. Median concentrations of total PBDEs are nine times lower than the levels of total PCBs along the entire studied stretch of the Rhône River. The results show that total PBDEs concentrations range from 0.06 to 239⯵g·kg-1 DW with a median value of 3.81⯵g·kg-1 DW and a maximum concentration measured in the years 2000s. These maximum concentrations are identical to those measured for total PCBs at the end of the 1990s, but show a different pattern of distribution. Abnormal dichlorodiphenyltrichloroethane (DDT) levels were also detected in the downstream section of the river, with a peak concentration of 147.5⯵g·kg-1 DW measured at the GEC site from 2005 onwards. Analyses of the enantiomeric fractions reveal a fresh input resulting from a technical formulation. Sediments from the core sampled at the most downstream site (GEC) are found to be highly toxic to organisms living nearby, particularly because of the total PCDD/Fs, DDE and DDT levels. In addition, based on available sediment quality guidelines, there may be a potential bioaccumulation risk for humans not only for these three compounds of concern but also for total PCBs and 7 out of the 8 analysed PBDEs.
RESUMO
A wide range of persistent organic chemicals, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), some insecticides, as well as polybrominated diphenyl ethers (PBDEs) and some perfluoroalkyl substances (PFASs) were analyzed in 17 bed sediments collected along the Saigon River and at adjacent canal mouths from upstream to downstream in Ho Chi Minh City (Vietnam). Concentrations were rather low for PAHs, as well as for legacy PCBs and dichloro-diphenyl-trichlorethane and metabolites (DDTs), or below detection limits for several PFASs and all PBDEs measured. Several insecticides (chlorpyrifos-ethyl, and the pyrethroids cypermethrin and λ-cyhalothrin) displayed rather high concentrations at a few sites within the city. There was no distinct upstream - downstream trend for PAHs, (DDTs) or PCBs. Although adjacent canal sediments tended to be more contaminated than Saigon River sediments, the differences were not significant. Emissions are almost certainly substantial for PAHs, and probably also for other contaminants such as PBDEs and some PFASs. During the dry season, contaminants are presumably stored in the city, either in canals or on urban surfaces. Heavy rainfall during the monsoon period carries away contaminated particle flows into the canals and then the Saigon River. The strong tidal influence in the river channel hinders the accumulation of contaminated particles. Contaminated deposits should accordingly be investigated further downstream in depositional environments, such as the mangrove.
Assuntos
Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Cidades , Monitoramento Ambiental , Poluição Ambiental , Éteres Difenil Halogenados/análise , Hidrocarbonetos Fluorados/análise , Inseticidas/análise , Compostos Orgânicos/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios/química , Inquéritos e Questionários , VietnãRESUMO
In a hydroelectric reservoir, sediments are subject to remobilization events, water-level fluctuations and physicochemical changes. Depending on their associated metallic content, surficial oxic to suboxic sediments could constitute a major source of metals. To identify the key parameters that control metallic elements in terms of their mobility and sensitivity to reservoir management, sediments were subject to resuspension and drying/wetting cycle experiments over a wide range of pH values, solid/liquid ratios (S/L) and redox (Eh) conditions. During these tests, special attention was also paid to the influence of pretreatments on samples, i.e., drying, aeration and the leachate composition (ultrapure water vs. natural water); on the preservation of the sediment characteristics; and especially on metallic element release. The results of this study show that the pH, S/L ratio and Eh parameters are key variables in metal solubilization; the pH influences metal mobility primarily through sorption-desorption phenomena as well as the dissolution of metallic-bearing phases, the S/L ratio modifies the sorption-desorption equilibria, and the Eh primarily affects the reducible sensitive phases and associated metallic elements through dissolution-precipitation processes. Under environmental conditions, evolution of these parameters can lead to a >20% solubilization of the most mobile elements, i.e., As and Cd. These results are influenced by the sample pretreatment and experimental conditions. In fact, even if the solubilization patterns show no significant differences between dry and wet sediment depending on the physicochemical conditions, the magnitude of their release is significantly affected. Drying pretreatment induces changes in metal speciation, notably altering the distribution of the most weakly bound elements; there is almost half the amount of metallic elements associated with the exchangeable fraction in dry compared to wet sediments. The solubilization percentages were higher in the ultrapure phase than in reservoir water primarily due to the low pH, which influenced the sorption equilibria.
RESUMO
Sediments play an important role on the quality of aquatic ecosystems, notably in the reservoir areas where they can either be a sink or a source of contaminants, depending on the management and hydrological conditions. The physicochemical properties of 25 surface sediments samples of a reservoir catchment (Vaussaire, Cantal, France) were studied. Results show a strong influence of dam presence, notably on the grain size and organic matter (OM) contents. The concentrations of trace metals and metalloids (As, Cd, Cr, Cu, Ni, Pb and Zn) were also measured and compared with worldwide reservoir concentrations and international sediment quality guideline levels in order to assess the intensity of the metallic contamination. Cr and Ni are the trace elements presenting the significantly highest values at the catchment scale. Enrichment Factors (EF), calculated using both local and national backgrounds, show that metals have mainly a natural origin, explaining especially the Cr and Ni values, linked with the composition of parental rocks. Unexpectedly, all the observed metal concentrations are lower in the reservoir than upstream and downstream, which might be related to the high fresh OM inputs in the reservoir, diluting the global metallic contamination. Multivariate statistical analyses, carried out in order to identify the relationship between the studied metals and sediment characteristics, tend to support this hypothesis, confirming the unusually low influence of such poorly-degraded OM on trace element accumulation in the reservoir.
RESUMO
In dam contexts, sluicing operations can be performed to reestablish sediments continuity, as proposed by the EU Water Framework Directive, as well as to preserve the reservoirs' water storage capacity. Such management permits the rapid release of high quantities of reservoir sediments through the opening of dam bottom valves. This work aims to study the impact of such operation on the evolution of environmental physicochemical conditions notably changes in dissolved metallic elements concentrations (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) through field and laboratory investigations. Results were interpreted in terms of concentrations and fluxes, and compared with data collected on an annual basis regarding both suspended matter and metallic elements. The release of high quantities of sediments (4,500tons dry weight in 24h), with concentrations representing up to 300 times the inter-annual mean suspended sediments discharge, significantly modified water parameters, notably solid/liquid (S/L) ratio, pH and redox conditions. Despite the fact that they are mainly trapped in stable phases, a clear increase of the solubilized metals content was measured, representing up to 60 times the maximum values of current exploitation. This solubilization is related to desorption phenomena from sediments through changes in chemical equilibriums as highlighted by laboratory characterizations and experiments. These chemical modifications are mainly attributed to S/L ratio variations. Indeed, the low S/L ratios (≤1.3g·L(-1)) measured in situ are typically the ones for which metals solubilization is the highest, as shown by laboratory experiments. Additional thermodynamic modeling highlighted that the decrease in pH measured during the operation favors the release of the free forms of metallic elements (Al and Cu), and decreases the OM complexation influence. These changes, either in term of physical conditions or speciation, increasing metals long term bioavailability notably during redeposition phase, may have adverse effects on aquatic biota.