Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Circulation ; 146(23): 1758-1778, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36259389

RESUMO

BACKGROUND: Phosphodiesterase 3A (PDE3A) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart, PDE3A mutations could be protective. METHODS: We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying PDE3A mutations were established, differentiated to cardiomyocytes, and analyzed by Ca2+ imaging. We used Förster resonance energy transfer and biochemical assays. RESULTS: We identified a new PDE3A mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB PDE3A mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The ß-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the PDE3A mutations caused adaptive changes of Ca2+ cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding. CONCLUSIONS: Although in vascular smooth muscle, PDE3A mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of PDE3A mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertension-induced cardiac damage.


Assuntos
Insuficiência Cardíaca , Hipertensão , Células-Tronco Pluripotentes Induzidas , Humanos , Ratos , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Microtomografia por Raio-X , Células-Tronco Pluripotentes Induzidas/metabolismo , Hipertensão/complicações , Hipertensão/genética , Miócitos Cardíacos/metabolismo , Cardiomegalia , RNA
2.
Circ Res ; 117(8): 707-19, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26243800

RESUMO

RATIONALE: Chronic elevation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels has been associated with cardiac remodeling and cardiac hypertrophy. However, enhancement of particular aspects of cAMP/protein kinase A signaling seems to be beneficial for the failing heart. cAMP is a pleiotropic second messenger with the ability to generate multiple functional outcomes in response to different extracellular stimuli with strict fidelity, a feature that relies on the spatial segregation of the cAMP pathway components in signaling microdomains. OBJECTIVE: How individual cAMP microdomains affect cardiac pathophysiology remains largely to be established. The cAMP-degrading enzymes phosphodiesterases (PDEs) play a key role in shaping local changes in cAMP. Here we investigated the effect of specific inhibition of selected PDEs on cardiac myocyte hypertrophic growth. METHODS AND RESULTS: Using pharmacological and genetic manipulation of PDE activity, we found that the rise in cAMP resulting from inhibition of PDE3 and PDE4 induces hypertrophy, whereas increasing cAMP levels via PDE2 inhibition is antihypertrophic. By real-time imaging of cAMP levels in intact myocytes and selective displacement of protein kinase A isoforms, we demonstrate that the antihypertrophic effect of PDE2 inhibition involves the generation of a local pool of cAMP and activation of a protein kinase A type II subset, leading to phosphorylation of the nuclear factor of activated T cells. CONCLUSIONS: Different cAMP pools have opposing effects on cardiac myocyte cell size. PDE2 emerges as a novel key regulator of cardiac hypertrophy in vitro and in vivo, and its inhibition may have therapeutic applications.


Assuntos
Cardiomegalia/prevenção & controle , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Miócitos Cardíacos/enzimologia , Sistemas do Segundo Mensageiro , Adenoviridae/genética , Animais , Animais Recém-Nascidos , Cardiomegalia/enzimologia , Cardiomegalia/genética , Cardiomegalia/patologia , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Modelos Animais de Doenças , Vetores Genéticos , Masculino , Microdomínios da Membrana/enzimologia , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Fosforilação , Interferência de RNA , Ratos Sprague-Dawley , Ratos Wistar , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Fatores de Tempo , Transdução Genética , Transfecção
3.
J Biol Chem ; 290(11): 6763-76, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25593322

RESUMO

Cyclic nucleotide phosphodiesterase 3A (PDE3) regulates cAMP-mediated signaling in the heart, and PDE3 inhibitors augment contractility in patients with heart failure. Studies in mice showed that PDE3A, not PDE3B, is the subfamily responsible for these inotropic effects and that murine PDE3A1 associates with sarcoplasmic reticulum Ca(2+) ATPase 2 (SERCA2), phospholamban (PLB), and AKAP18 in a multiprotein signalosome in human sarcoplasmic reticulum (SR). Immunohistochemical staining demonstrated that PDE3A co-localizes in Z-bands of human cardiac myocytes with desmin, SERCA2, PLB, and AKAP18. In human SR fractions, cAMP increased PLB phosphorylation and SERCA2 activity; this was potentiated by PDE3 inhibition but not by PDE4 inhibition. During gel filtration chromatography of solubilized SR membranes, PDE3 activity was recovered in distinct high molecular weight (HMW) and low molecular weight (LMW) peaks. HMW peaks contained PDE3A1 and PDE3A2, whereas LMW peaks contained PDE3A1, PDE3A2, and PDE3A3. Western blotting showed that endogenous HMW PDE3A1 was the principal PKA-phosphorylated isoform. Phosphorylation of endogenous PDE3A by rPKAc increased cAMP-hydrolytic activity, correlated with shift of PDE3A from LMW to HMW peaks, and increased co-immunoprecipitation of SERCA2, cav3, PKA regulatory subunit (PKARII), PP2A, and AKAP18 with PDE3A. In experiments with recombinant proteins, phosphorylation of recombinant human PDE3A isoforms by recombinant PKA catalytic subunit increased co-immunoprecipitation with rSERCA2 and rat rAKAP18 (recombinant AKAP18). Deletion of the recombinant human PDE3A1/PDE3A2 N terminus blocked interactions with recombinant SERCA2. Serine-to-alanine substitutions identified Ser-292/Ser-293, a site unique to human PDE3A1, as the principal site regulating its interaction with SERCA2. These results indicate that phosphorylation of human PDE3A1 at a PKA site in its unique N-terminal extension promotes its incorporation into SERCA2/AKAP18 signalosomes, where it regulates a discrete cAMP pool that controls contractility by modulating phosphorylation-dependent protein-protein interactions, PLB phosphorylation, and SERCA2 activity.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Miocárdio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteínas de Ancoragem à Quinase A/análise , Proteínas de Ancoragem à Quinase A/metabolismo , Cálcio/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/análise , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/análise , Humanos , Miocárdio/citologia , Miocárdio/enzimologia , Miocárdio/ultraestrutura , Fosforilação , Mapas de Interação de Proteínas , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/análise
4.
Biol Reprod ; 94(5): 110, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27009040

RESUMO

The meiotic cell cycle of mammalian oocytes in preovulatory follicles is held in prophase arrest by diffusion of cGMP from the surrounding granulosa cells into the oocyte. Luteinizing hormone (LH) then releases meiotic arrest by lowering cGMP in the granulosa cells. The LH-induced reduction of cGMP is caused in part by a decrease in guanylyl cyclase activity, but the observation that the cGMP phosphodiesterase PDE5 is phosphorylated during LH signaling suggests that an increase in PDE5 activity could also contribute. To investigate this idea, we measured cGMP-hydrolytic activity in rat ovarian follicles. Basal activity was due primarily to PDE1A and PDE5, and LH increased PDE5 activity. The increase in PDE5 activity was accompanied by phosphorylation of PDE5 at serine 92, a protein kinase A/G consensus site. Both the phosphorylation and the increase in activity were promoted by elevating cAMP and opposed by inhibiting protein kinase A, supporting the hypothesis that LH activates PDE5 by stimulating its phosphorylation by protein kinase A. Inhibition of PDE5 activity partially suppressed LH-induced meiotic resumption as indicated by nuclear envelope breakdown, but inhibition of both PDE5 and PDE1 activities was needed to completely inhibit this response. These results show that activities of both PDE5 and PDE1 contribute to the LH-induced resumption of meiosis in rat oocytes, and that phosphorylation and activation of PDE5 is a regulatory mechanism.


Assuntos
GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Hormônio Luteinizante/farmacologia , Meiose/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
5.
Proc Natl Acad Sci U S A ; 110(49): 19778-83, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24248367

RESUMO

Inhibitors of cyclic nucleotide phosphodiesterase (PDE) PDE3A have inotropic actions in human myocardium, but their long-term use increases mortality in patients with heart failure. Two isoforms in cardiac myocytes, PDE3A1 and PDE3A2, have identical amino acid sequences except for a unique N-terminal extension in PDE3A1. We expressed FLAG-tagged PDE3A1 and PDE3A2 in HEK293 cells and examined their regulation by PKA- and PKC-mediated phosphorylation. PDE3A1, which is localized to intracellular membranes, and PDE3A2, which is cytosolic, were phosphorylated at different sites within their common sequence. Exposure to isoproterenol led to phosphorylation of PDE3A1 at the 14-3-3-binding site S312, whereas exposure to PMA led to phosphorylation of PDE3A2 at an alternative 14-3-3-binding site, S428. PDE3A2 activity was stimulated by phosphorylation at S428, whereas PDE3A1 activity was not affected by phosphorylation at either site. Phosphorylation of PDE3A1 by PKA and of PDE3A2 by PKC led to shifts in elution on gel-filtration chromatography consistent with increased interactions with other proteins, and 2D electrophoresis of coimmunoprecipitated proteins revealed that the two isoforms have distinct protein interactomes. A similar pattern of differential phosphorylation of endogenous PDE3A1 and PDE3A2 at S312 and S428 is observed in human myocardium. The selective phosphorylation of PDE3A1 and PDE3A2 at alternative sites through different signaling pathways, along with the different functional consequences of phosphorylation for each isoform, suggest they are likely to have distinct roles in cyclic nucleotide-mediated signaling in human myocardium, and raise the possibility that isoform-selective inhibition may allow inotropic responses without an increase in mortality.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Inibidores da Fosfodiesterase 3/farmacologia , Proteínas 14-3-3/genética , Sítios de Ligação/genética , Cromatografia em Gel , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Eletroforese em Gel Bidimensional , Ativação Enzimática/fisiologia , Células HEK293 , Humanos , Imunoprecipitação , Isoenzimas/metabolismo , Isoproterenol/farmacologia , Inibidores da Fosfodiesterase 3/metabolismo , Fosforilação , Proteína Quinase C/metabolismo
6.
Curr Opin Cardiol ; 30(3): 285-91, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25807221

RESUMO

PURPOSE OF REVIEW: The most extensively studied inotropic agents in patients with heart failure are phosphodiesterase (PDE) 3 inhibitors, which increase contractility by raising intracellular cyclic adenosine monophosphate content. In clinical trials, the inotropic benefits of these agents have been outweighed by an increase in sudden cardiac death. Here, I review recent findings that help explain what are likely to be distinct mechanisms involved in the beneficial and adverse effects of PDE3 inhibition. RECENT FINDINGS: The proapoptotic consequences of PDE3 inhibition are becoming more apparent. Moreover, it has also become clear that individual PDE3 isoforms in cardiac myocytes are selectively regulated to interact with different proteins in different intracellular compartments. The beneficial and adverse effects of PDE3 inhibition may thus be attributable to the inhibition of different isoforms in different intracellular domains. In particular, PDE3A1 has been shown to interact directly with sarcoplasmic/endoplasmic reticulum Ca ATPase (SERCA2) in the sarcoplasmic reticulum through a phosphorylation of a site in its unique N-terminal domain, making it possible that this isoform can be selectively targeted to increase intracellular Ca cycling. SUMMARY: Conventional PDE3 inhibitors target several functionally distinct isoforms of these enzymes. Isoform-selective and/or compartment-selective targeting of PDE3, through its protein-protein interactions, may produce the inotropic benefits of PDE3 inhibition without the adverse consequences.


Assuntos
Cardiomiopatia Dilatada/tratamento farmacológico , Cardiotônicos/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Contração Miocárdica , Inibidores da Fosfodiesterase 3/uso terapêutico , Fatores Etários , Cardiotônicos/efeitos adversos , AMP Cíclico/metabolismo , Morte Súbita Cardíaca/etiologia , Humanos , Miócitos Cardíacos/metabolismo , Inibidores da Fosfodiesterase 3/efeitos adversos , Transdução de Sinais
7.
Circ Res ; 112(2): 289-97, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23168336

RESUMO

RATIONALE: cAMP is an important regulator of myocardial function, and regulation of cAMP hydrolysis by cyclic nucleotide phosphodiesterases (PDEs) is a critical determinant of the amplitude, duration, and compartmentation of cAMP-mediated signaling. The role of different PDE isozymes, particularly PDE3A vs PDE3B, in the regulation of heart function remains unclear. OBJECTIVE: To determine the relative contribution of PDE3A vs PDE3B isozymes in the regulation of heart function and to dissect the molecular basis for this regulation. METHODS AND RESULTS: Compared with wild-type littermates, cardiac contractility and relaxation were enhanced in isolated hearts from PDE3A(-/-), but not PDE3B(-/-), mice. Furthermore, PDE3 inhibition had no effect on PDE3A(-/-) hearts but increased contractility in wild-type (as expected) and PDE3B(-/-) hearts to levels indistinguishable from PDE3A(-/-). The enhanced contractility in PDE3A(-/-) hearts was associated with cAMP-dependent elevations in Ca(2+) transient amplitudes and increased sarcoplasmic reticulum (SR) Ca(2+) content, without changes in L-type Ca(2+) currents of cardiomyocytes, as well as with increased SR Ca(2+)-ATPase type 2a activity, SR Ca(2+) uptake rates, and phospholamban phosphorylation in SR fractions. Consistent with these observations, PDE3 activity was reduced ≈8-fold in SR fractions from PDE3A(-/-) hearts. Coimmunoprecipitation experiments further revealed that PDE3A associates with both SR calcium ATPase type 2a and phospholamban in a complex that also contains A-kinase anchoring protein-18, protein kinase type A-RII, and protein phosphatase type 2A. CONCLUSIONS: Our data support the conclusion that PDE3A is the primary PDE3 isozyme modulating basal contractility and SR Ca(2+) content by regulating cAMP in microdomains containing macromolecular complexes of SR calcium ATPase type 2a-phospholamban-PDE3A.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/fisiologia , Coração/fisiologia , Contração Miocárdica/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Retículo Sarcoplasmático/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia
8.
Circ Res ; 109(9): 1024-1030, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21903937

RESUMO

RATIONALE: Baseline contractility of mouse hearts is modulated in a phosphatidylinositol 3-kinase-γ-dependent manner by type 4 phosphodiesterases (PDE4), which regulate cAMP levels within microdomains containing the sarcoplasmic reticulum (SR) calcium ATPase type 2a (SERCA2a). OBJECTIVE: The goal of this study was to determine whether PDE4D regulates basal cardiac contractility. METHODS AND RESULTS: At 10 to 12 weeks of age, baseline cardiac contractility in PDE4D-deficient (PDE4D(-/-)) mice was elevated mice in vivo and in Langendorff perfused hearts, whereas isolated PDE4D(-/-) cardiomyocytes showed increased whole-cell Ca2+ transient amplitudes and SR Ca2+content but unchanged L-type calcium current, compared with littermate controls (WT). The protein kinase A inhibitor R(p)-adenosine-3',5' cyclic monophosphorothioate (R(p)-cAMP) lowered whole-cell Ca2+ transient amplitudes and SR Ca2+ content in PDE4D(-/-) cardiomyocytes to WT levels. The PDE4 inhibitor rolipram had no effect on cardiac contractility, whole-cell Ca2+ transients, or SR Ca2+ content in PDE4D(-/-) preparations but increased these parameters in WT myocardium to levels indistinguishable from those in PDE4D(-/-). The functional changes in PDE4D(-/-) myocardium were associated with increased PLN phosphorylation but not cardiac ryanodine receptor phosphorylation. Rolipram increased PLN phosphorylation in WT cardiomyocytes to levels indistinguishable from those in PDE4D(-/-) cardiomyocytes. In murine and failing human hearts, PDE4D coimmunoprecipitated with SERCA2a but not with cardiac ryanodine receptor. CONCLUSIONS: PDE4D regulates basal cAMP levels in SR microdomains containing SERCA2a-PLN, but not L-type Ca2+ channels or ryanodine receptor. Because whole-cell Ca2+ transient amplitudes are reduced in failing human myocardium, these observations may have therapeutic implications for patients with heart failure.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Cálcio/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Feminino , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
9.
Basic Res Cardiol ; 106(2): 249-62, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21161247

RESUMO

PDE4 isoenzymes are critical in the control of cAMP signaling in rodent cardiac myocytes. Ablation of PDE4 affects multiple key players in excitation-contraction coupling and predisposes mice to the development of heart failure. As little is known about PDE4 in human heart, we explored to what extent cardiac expression and functions of PDE4 are conserved between rodents and humans. We find considerable similarities including comparable amounts of PDE4 activity expressed, expression of the same PDE4 subtypes and splicing variants, anchoring of PDE4 to the same subcellular compartments and macromolecular signaling complexes, and downregulation of PDE4 activity and protein in heart failure. The major difference between the species is a fivefold higher amount of non-PDE4 activity in human hearts compared to rodents. As a consequence, the effect of PDE4 inactivation is different in rodents and humans. PDE4 inhibition leads to increased phosphorylation of virtually all PKA substrates in mouse cardiomyocytes, but increased phosphorylation of only a restricted number of proteins in human cardiomyocytes. Our findings suggest that PDE4s have a similar role in the local regulation of cAMP signaling in rodent and human heart. However, inhibition of PDE4 has 'global' effects on cAMP signaling only in rodent hearts, as PDE4 comprises a large fraction of the total cardiac PDE activity in rodents but not in humans. These differences may explain the distinct pharmacological effects of PDE4 inhibition in rodent and human hearts.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Insuficiência Cardíaca/enzimologia , Miocárdio/enzimologia , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , Humanos , Isoenzimas/metabolismo , Camundongos , Miócitos Cardíacos/enzimologia , Fosforilação , Ratos
10.
Handb Exp Pharmacol ; (204): 237-49, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21695643

RESUMO

Compounds that inhibit the catalytic activity of cyclic nucleotide phosphodiesterases are used as therapeutic agents to increase intracellular cAMP and/or cGMP content in cells or tissues of interest. In patients with heart failure, inhibitors of enzymes in the PDE3 family of cyclic nucleotide phosphodiesterases are used to raise intracellular cAMP content in cardiac muscle, with inotropic actions. These drugs are effective in acute applications, but their long-term use has been complicated by an increase in cardiovascular mortality in clinical trials. Inhibitors of enzymes in the PDE5 family have been used to raise cGMP content in cardiac muscle in animal models of pressure overload, chronic ß-adrenergic receptor stimulation, ischemic injury, and doxorubicin toxicity, and have been shown to have antihypertrophic and cardioprotective actions. Recent experimental results raise some question as to the likely applicability of these findings to humans, in whose hearts PDE5 is present at much lower levels than those seen in animal models, and raise the possibility of PDE1, a dual-specificity phosphodiesterase present at high levels in human myocardium, as an alternative target for inotropic and cardioprotective actions.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Inibidores de Fosfodiesterase/uso terapêutico , Animais , AMP Cíclico/análise , GMP Cíclico/análise , Insuficiência Cardíaca/enzimologia , Humanos , Inibidores da Fosfodiesterase 3/uso terapêutico , Inibidores da Fosfodiesterase 4/uso terapêutico , Inibidores da Fosfodiesterase 5/uso terapêutico
11.
J Pharmacol Exp Ther ; 330(3): 884-91, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19546307

RESUMO

In mouse models of cardiac disease, the type 5 (PDE5)-selective cyclic nucleotide phosphodiesterase inhibitor sildenafil has antihypertrophic and cardioprotective effects attributable to the inhibition of cGMP hydrolysis. To investigate the relevance of these findings to humans, we quantified cGMP-hydrolytic activity and its inhibition by sildenafil in cytosolic and microsomal preparations from the left ventricular myocardium of normal and failing human hearts. The vast majority of cGMP-hydrolytic activity was attributable to PDE1 and PDE3. Sildenafil had no measurable effect on cGMP hydrolysis at 10 nM, at which it is selective for PDE5, but it had a marked effect on cGMP and cAMP hydrolysis at 1 microM, at which it inhibits PDE1. In contrast, in preparations from the left ventricles of normal mice and mice with heart failure resulting from coronary artery ligation, the effects of sildenafil on cGMP hydrolysis were attributable to inhibition of both PDE5 and PDE1; PDE5 comprised approximately 22 and approximately 43% of the cytosolic cGMP-hydrolytic activity in preparations from normal and failing mouse hearts, respectively. These differences in PDE5 activities in human and mouse hearts call into question the extent to which the effects of sildenafil in mouse models are likely to be applicable in humans and raise the possibility of PDE1 as an alternative therapeutic target.


Assuntos
AMP Cíclico/metabolismo , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Piperazinas/farmacologia , Sulfonas/farmacologia , Animais , Vasos Coronários/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Humanos , Hidrólise , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microssomos/efeitos dos fármacos , Microssomos/metabolismo , Inibidores da Fosfodiesterase 3 , Inibidores da Fosfodiesterase 5 , Fosfodiesterase I/antagonistas & inibidores , Fosfodiesterase I/metabolismo , Purinas/farmacologia , Citrato de Sildenafila , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
12.
J Card Fail ; 15(1): 31-4, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19181291

RESUMO

BACKGROUND: Phosphodiesterase-5 (PDE5) inhibitors, which induce relaxation of smooth muscle with some selectivity for the pulmonary vasculature, are used in the treatment of pulmonary hypertension. In some patients, the use of PDE5 inhibitors does not result in the desired magnitude of pulmonary vasodilation. The use of additional vasodilators to further reduce pulmonary vascular resistance is often accompanied by unacceptable reductions in systemic arterial pressure. METHODS AND RESULTS: In 3 patients with heart failure, pulmonary hypertension and low systemic arterial pressures treated with sildenafil, systemic nitrates were added to reduce pulmonary hypertension further. Hemodynamic measurements were made before and after addition of nitrates. Addition of systemic nitrates to sildenafil led to a reduction in mean pulmonary arterial pressure of 11 mm Hg, from 37 mm Hg to 26 mm Hg (P = .06), whereas mean systemic arterial pressure decreased by only 4 mm Hg, from 77 mm Hg to 73 mm Hg (P = .53). The ratio of pulmonary vascular resistance to systemic vascular resistance was reduced by 45% (P = .1). Treatment with sildenafil and nitrates was continued for two to eight months, with no episodes of marked systemic hypotension, syncope, or lightheadedness. CONCLUSIONS: These results suggest that addition of systemic nitrates to sildenafil results in a potentiation of vasodilation that is relatively selective for the pulmonary vasculature, and that this combination may be safe and effective in the treatment of pulmonary hypertension in patients with low systemic arterial pressures.


Assuntos
Insuficiência Cardíaca/complicações , Hipertensão Pulmonar/tratamento farmacológico , Nitrocompostos/uso terapêutico , Inibidores da Fosfodiesterase 5 , Inibidores de Fosfodiesterase/uso terapêutico , Vasodilatadores/uso terapêutico , GMP Cíclico , Quimioterapia Combinada , Humanos , Hipertensão Pulmonar/complicações , Dinitrato de Isossorbida/uso terapêutico , Masculino , Pessoa de Meia-Idade , Nitroglicerina/uso terapêutico , Piperazinas/uso terapêutico , Artéria Pulmonar/efeitos dos fármacos , Purinas/uso terapêutico , Citrato de Sildenafila , Sulfonas/uso terapêutico , Vasodilatação/efeitos dos fármacos
13.
Heart Fail Rev ; 14(4): 255-63, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19096931

RESUMO

Drugs that inhibit cyclic nucleotide phosphodiesterase activity act to increase intracellular cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) content. In total, 11 families of these enzymes-which differ with respect to affinity for cAMP and cGMP, cellular expression, intracellular localization, and mechanisms of regulation-have been identified. Inhibitors of enzymes in the PDE3 family of cyclic nucleotide phosphodiesterases raise intracellular cAMP content in cardiac and vascular smooth muscle, with inotropic and, to a lesser extent, vasodilatory actions. These drugs have been used for many years in the treatment of patients with heart failure, but their long-term use has generally been shown to increase mortality through mechanisms that remain unclear. More recently, inhibitors of PDE5 cyclic nucleotide phosphodiesterases have been used as cGMP-raising agents in vascular smooth muscle. With respect to cardiovascular disease, there is evidence that these drugs are more efficacious in the pulmonary than in the systemic vasculature, for which reason they are used principally in patients with pulmonary hypertension. Effects attributable to inhibition of myocardial PDE5 activity are less well characterized. New information indicating that enzymes from the PDE1 family of cyclic nucleotide phosphodiesterases constitute the majority of cAMP- and cGMP-hydrolytic activity in human myocardium raises questions as to their role in regulating these signaling pathways in heart failure.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Inibidores de Fosfodiesterase/uso terapêutico , 3',5'-AMP Cíclico Fosfodiesterases/efeitos dos fármacos , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Humanos , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Purinas/farmacologia , Purinas/uso terapêutico , Citrato de Sildenafila , Sulfonas/farmacologia , Sulfonas/uso terapêutico , Resultado do Tratamento
14.
Circ Res ; 100(11): 1569-78, 2007 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-17556670

RESUMO

Cyclic nucleotide phosphodiesterases regulate cAMP-mediated signaling by controlling intracellular cAMP content. The cAMP-hydrolyzing activity of several families of cyclic nucleotide phosphodiesterases found in human heart is regulated by cGMP. In the case of PDE2, this regulation primarily involves the allosteric stimulation of cAMP hydrolysis by cGMP. For PDE3, cGMP acts as a competitive inhibitor of cAMP hydrolysis. Several cGMP-mediated responses in cardiac cells, including a potentiation of Ca(2+) currents and a diminution of the responsiveness to beta-adrenergic receptor agonists, have been shown to result from the effects of cGMP on cAMP hydrolysis. These effects appear to be dependent on the specific spatial distribution of the cGMP-generating and cAMP-hydrolyzing proteins, as well as on the intracellular concentrations of the two cyclic nucleotides. Gaining a more precise understanding of how these cross-talk mechanisms are individually regulated and coordinated is an important direction for future research.


Assuntos
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Miocárdio/metabolismo , Diester Fosfórico Hidrolases/fisiologia , Receptor Cross-Talk/fisiologia , Transdução de Sinais/fisiologia , Animais , Cálcio/metabolismo , Humanos
15.
J Am Coll Cardiol ; 73(10): 1173-1184, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30871701

RESUMO

BACKGROUND: The phosphodiesterase 3A (PDE3A) gene encodes a PDE that regulates cardiac myocyte cyclic adenosine monophosphate (cAMP) levels and myocardial contractile function. PDE3 inhibitors (PDE3i) are used for short-term treatment of refractory heart failure (HF), but do not produce uniform long-term benefit. OBJECTIVES: The authors tested the hypothesis that drug target genetic variation could explain clinical response heterogeneity to PDE3i in HF. METHODS: PDE3A promoter studies were performed in a cloned luciferase construct. In human left ventricular (LV) preparations, mRNA expression was measured by reverse transcription polymerase chain reaction, and PDE3 enzyme activity by cAMP-hydrolysis. RESULTS: The authors identified a 29-nucleotide (nt) insertion (INS)/deletion (DEL) polymorphism in the human PDE3A gene promoter beginning 2,214 nt upstream from the PDE3A1 translation start site. Transcription factor ATF3 binds to the INS and represses cAMP-dependent promoter activity. In explanted failing LVs that were homozygous for PDE3A DEL and had been treated with PDE3i pre-cardiac transplantation, PDE3A1 mRNA abundance and microsomal PDE3 enzyme activity were increased by 1.7-fold to 1.8-fold (p < 0.05) compared with DEL homozygotes not receiving PDE3i. The basis for the selective up-regulation in PDE3A gene expression in DEL homozygotes treated with PDE3i was a cAMP response element enhancer 61 nt downstream from the INS, which was repressed by INS. The DEL homozygous genotype frequency was also enriched in patients with HF. CONCLUSIONS: A 29-nt INS/DEL polymorphism in the PDE3A promoter regulates cAMP-induced PDE3A gene expression in patients treated with PDE3i. This molecular mechanism may explain response heterogeneity to this drug class, and may inform a pharmacogenetic strategy for a more effective use of PDE3i in HF.


Assuntos
Insuficiência Cardíaca , Inibidores da Fosfodiesterase 3/farmacologia , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Humanos , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/genética , Miócitos Cardíacos/metabolismo , Testes Farmacogenômicos , Polimorfismo Genético , Transdução de Sinais
16.
Pharmacotherapy ; 28(12): 1523-30, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19025433

RESUMO

Abstract Rational use of phosphodiesterase inhibitors represents an ongoing controversy in contemporary pharmacotherapy for heart failure. In randomized clinical trials, phosphodiesterase inhibitors increased cardiac output at the expense of worsening the rates of sudden cardiac death and cardiovascular mortality. Preliminary findings from ongoing clinical and preclinical investigations of phosphodiesterase activity suggest that combined use of phosphodiesterase inhibitors with beta-adrenergic antagonists may prevent these adverse outcomes. Compartmentation of cyclic adenosine 3',5'-monophosphate signaling may prove critical in determining myocardial response to combination therapy.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Inibidores de Fosfodiesterase/uso terapêutico , Doença Crônica , AMP Cíclico/metabolismo , Quimioterapia Combinada , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Modelos Biológicos , Ensaios Clínicos Controlados Aleatórios como Assunto , Transdução de Sinais/efeitos dos fármacos
17.
J Cardiovasc Dev Dis ; 5(1)2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29415428

RESUMO

Isoforms in the PDE3 family of cyclic nucleotide phosphodiesterases have important roles in cyclic nucleotide-mediated signalling in cardiac myocytes. These enzymes are targeted by inhibitors used to increase contractility in patients with heart failure, with a combination of beneficial and adverse effects on clinical outcomes. This review covers relevant aspects of the molecular biology of the isoforms that have been identified in cardiac myocytes; the roles of these enzymes in modulating cAMP-mediated signalling and the processes mediated thereby; and the potential for targeting these enzymes to improve the profile of clinical responses.

18.
Endocrinology ; 159(5): 2142-2152, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29608743

RESUMO

Luteinizing hormone (LH) acts on the granulosa cells that surround the oocyte in mammalian preovulatory follicles to cause meiotic resumption and ovulation. Both of these responses are mediated primarily by an increase in cyclic adenosine monophosphate (cAMP) in the granulosa cells, and the activity of cAMP phosphodiesterases (PDEs), including PDE4, contributes to preventing premature responses. However, two other cAMP-specific PDEs, PDE7 and PDE8, are also expressed at high levels in the granulosa cells, raising the question of whether these PDEs also contribute to preventing uncontrolled activation of meiotic resumption and ovulation. With the use of selective inhibitors, we show that inhibition of PDE7 or PDE8 alone has no effect on the cAMP content of follicles, and inhibition of PDE4 alone has only a small and variable effect. In contrast, a mixture of the three inhibitors elevates cAMP to a level comparable with that seen with LH. Correspondingly, inhibition of PDE7 or PDE8 alone has no effect on meiotic resumption or ovulation, and inhibition of PDE4 alone has only a partial and slow effect. However, the fraction of oocytes resuming meiosis and undergoing ovulation is increased when PDE4, PDE7, and PDE8 are simultaneously inhibited. PDE4, PDE7, and PDE8 also function together to suppress the premature synthesis of progesterone and progesterone receptors, which are required for ovulation. Our results indicate that three cAMP PDEs act in concert to suppress premature responses in preovulatory follicles.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Meiose/fisiologia , Oócitos/metabolismo , Ovulação/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Feminino , Meiose/efeitos dos fármacos , Camundongos , Oócitos/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Rolipram/farmacologia
19.
J Med Chem ; 61(10): 4635-4640, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29718668

RESUMO

We disclose the discovery and X-ray cocrystal data of potent, selective quinazoline inhibitors of PDE1. Inhibitor ( S)-3 readily attains free plasma concentrations above PDE1 IC50 values and has restricted brain access. The racemic compound 3 inhibits >75% of PDE hydrolytic activity in soluble samples of human myocardium, consistent with heightened PDE1 activity in this tissue. These compounds represent promising new tools to probe the value of PDE1 inhibition in the treatment of cardiovascular disease.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/antagonistas & inibidores , Descoberta de Drogas , Miocárdio/enzimologia , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Quinazolinas/química , AMP Cíclico/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica
20.
Pharmacol Ther ; 163: 74-81, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27108947

RESUMO

Inhibitors of PDE3, a family of dual-specificity cyclic nucleotide phosphodiesterases, are used clinically to increase cardiac contractility by raising intracellular cAMP content in cardiac myocytes and to reduce vascular resistance by increasing intracellular cGMP content in vascular smooth muscle myocytes. When used in the treatment of patients with heart failure, PDE3 inhibitors are effective in the acute setting but increase sudden cardiac death with long-term administration, possibly reflecting pro-apoptotic and pro-hypertrophic consequences of increased cAMP-mediated signaling in cardiac myocytes. cAMP-mediated signaling in cardiac myocytes is highly compartmentalized, and different phosphodiesterases, by controlling cAMP content in functionally discrete intracellular microcompartments, regulate different cAMP-mediated pathways. Four variants/isoforms of PDE3 (PDE3A1, PDE3A2, PDE3A3, and PDE3B) are expressed in cardiac myocytes, and new experimental results have demonstrated that these isoforms, which are differentially localized intracellularly through unique protein-protein interactions, control different physiologic responses. While the catalytic regions of these isoforms may be too similar to allow the catalytic activity of each isoform to be selectively inhibited, targeting their unique protein-protein interactions may allow desired responses to be elicited without the adverse consequences that limit the usefulness of existing PDE3 inhibitors.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Inibidores da Fosfodiesterase 3/farmacologia , Animais , AMP Cíclico/biossíntese , GMP Cíclico/biossíntese , Insuficiência Cardíaca/mortalidade , Humanos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosforilação/fisiologia , Isoformas de Proteínas , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa