Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2317274121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38579010

RESUMO

Here, we describe the identification of an antibiotic class acting via LpxH, a clinically unexploited target in lipopolysaccharide synthesis. The lipopolysaccharide synthesis pathway is essential in most Gram-negative bacteria and there is no analogous pathway in humans. Based on a series of phenotypic screens, we identified a hit targeting this pathway that had activity on efflux-defective strains of Escherichia coli. We recognized common structural elements between this hit and a previously published inhibitor, also with activity against efflux-deficient bacteria. With the help of X-ray structures, this information was used to design inhibitors with activity on efflux-proficient, wild-type strains. Optimization of properties such as solubility, metabolic stability and serum protein binding resulted in compounds having potent in vivo efficacy against bloodstream infections caused by the critical Gram-negative pathogens E. coli and Klebsiella pneumoniae. Other favorable properties of the series include a lack of pre-existing resistance in clinical isolates, and no loss of activity against strains expressing extended-spectrum-ß-lactamase, metallo-ß-lactamase, or carbapenemase-resistance genes. Further development of this class of antibiotics could make an important contribution to the ongoing struggle against antibiotic resistance.


Assuntos
Antibacterianos , Lipopolissacarídeos , Humanos , Antibacterianos/química , Escherichia coli/metabolismo , Bactérias Gram-Negativas/metabolismo , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
2.
Bioorg Med Chem Lett ; 102: 129666, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382679

RESUMO

Because tuberculosis is still a major health threat worldwide, identification of new drug targets is urgently needed. In this study, we considered type B ribose-5-phosphate isomerase from Mycobacterium tuberculosis as a potential target, and addressed known problems of previous inhibitors in terms of their sensitivity to hydrolysis catalyzed by phosphatase enzymes, which impaired their potential use as drugs. To this end, we synthesized six novel phosphomimetic compounds designed to be hydrolytically stable analogs of the substrate ribose 5-phosphate and the best known inhibitor 5-phospho-d-ribonate. The phosphate function was replaced by phosphonomethyl, sulfate, sulfonomethyl, or malonate groups. Inhibition was evaluated on type A and type B ribose-5-phosphate isomerases, and stability towards hydrolysis using alkaline phosphatase and veal serum was assessed. One of the phosphomimetic analogs, 5-deoxy-5-phosphonomethyl-d-ribonate, emerged as the first strong and specific inhibitor of the M. tuberculosis enzyme that is resistant to hydrolysis.

3.
Mol Microbiol ; 103(1): 13-25, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27677649

RESUMO

There is an urgent need to discover new anti-tubercular agents with novel mechanisms of action in order to tackle the scourge of drug-resistant tuberculosis. Here, we report the identification of such a molecule - an AminoPYrimidine-Sulfonamide (APYS1) that has potent, bactericidal activity against M. tuberculosis. Mutations in APYS1-resistant M. tuberculosis mapped exclusively to wag31, a gene that encodes a scaffolding protein thought to orchestrate cell elongation. Recombineering confirmed that a Gln201Arg mutation in Wag31 was sufficient to cause resistance to APYS1, however, neither overexpression nor conditional depletion of wag31 impacted M. tuberculosis susceptibility to this compound. In contrast, expression of the wildtype allele of wag31 in APYS1-resistant M. tuberculosis was dominant and restored susceptibility to APYS1 to wildtype levels. Time-lapse imaging and scanning electron microscopy revealed that APYS1 caused gross malformation of the old pole of M. tuberculosis, with eventual lysis. These effects resembled the morphological changes observed following transcriptional silencing of wag31 in M. tuberculosis. These data show that Wag31 is likely not the direct target of APYS1, but the striking phenotypic similarity between APYS1 exposure and genetic depletion of Wag31 in M. tuberculosis suggests that APYS1 might indirectly affect Wag31 through an as yet unknown mechanism.


Assuntos
Antituberculosos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pirimidinas/farmacocinética , Antibacterianos/farmacocinética , Crescimento Celular , Descoberta de Drogas/métodos , Regulação Bacteriana da Expressão Gênica/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Homologia de Sequência de Aminoácidos , Sulfonamidas/metabolismo , Sulfonamidas/farmacocinética , Imagem com Lapso de Tempo
4.
Bioorg Med Chem ; 25(3): 897-911, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28038943

RESUMO

Type I signal peptidases are potential targets for the development of new antibacterial agents. Here we report finding potent inhibitors of E. coli type I signal peptidase (LepB), by optimizing a previously reported hit compound, decanoyl-PTANA-CHO, through modifications at the N- and C-termini. Good improvements of inhibitory potency were obtained, with IC50s in the low nanomolar range. The best inhibitors also showed good antimicrobial activity, with MICs in the low µg/mL range for several bacterial species. The selection of resistant mutants provided strong support for LepB as the target of these compounds. The cytotoxicity and hemolytic profiles of these compounds are not optimal but the finding that minor structural changes cause the large effects on these properties suggests that there is potential for optimization in future studies.


Assuntos
Desenho de Fármacos , Escherichia coli/enzimologia , Proteínas de Membrana/antagonistas & inibidores , Oligopeptídeos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Estrutura Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Serina Endopeptidases/metabolismo , Relação Estrutura-Atividade
5.
Molecules ; 19(9): 13161-76, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25162957

RESUMO

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. Globally, tuberculosis is second only to AIDS in mortality and the disease is responsible for over 1.3 million deaths each year. The impractically long treatment schedules (generally 6-9 months) and unpleasant side effects of the current drugs often lead to poor patient compliance, which in turn has resulted in the emergence of multi-, extensively- and totally-drug resistant strains. The development of new classes of anti-tuberculosis drugs and new drug targets is of global importance, since attacking the bacterium using multiple strategies provides the best means to prevent resistance. This review presents an overview of the various strategies and compounds utilized to inhibit glutamine synthetase, a promising target for the development of drugs for TB therapy.


Assuntos
Antituberculosos/uso terapêutico , Glutamato-Amônia Ligase/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Antituberculosos/química , Descoberta de Drogas , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/metabolismo , Humanos , Mycobacterium tuberculosis/enzimologia , Relação Estrutura-Atividade , Tuberculose/enzimologia , Tuberculose/patologia
6.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 2): 134-43, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22281742

RESUMO

A number of pathogens, including the causative agents of tuberculosis and malaria, synthesize the essential isoprenoid precursor isopentenyl diphosphate via the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway rather than the classical mevalonate pathway that is found in humans. As part of a structure-based drug-discovery program against tuberculosis, DXR, the enzyme that carries out the second step in the MEP pathway, has been investigated. This enzyme is the target for the antibiotic fosmidomycin and its active acetyl derivative FR-900098. The structure of DXR from Mycobacterium tuberculosis in complex with FR-900098, manganese and the NADPH cofactor has been solved and refined. This is a new crystal form that diffracts to a higher resolution than any other DXR complex reported to date. Comparisons with other ternary complexes show that the conformation is that of the enzyme in an active state: the active-site flap is well defined and the cofactor-binding domain has a conformation that brings the NADPH into the active site in a manner suitable for catalysis. The substrate-binding site is highly conserved in a number of pathogens that use this pathway, so any new inhibitor that is designed for the M. tuberculosis enzyme is likely to exhibit broad-spectrum activity.


Assuntos
Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/metabolismo , Antibacterianos/farmacologia , Fosfomicina/análogos & derivados , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Mycobacterium tuberculosis/enzimologia , Oxirredutases/química , Oxirredutases/metabolismo , Sequência de Aminoácidos , Antibacterianos/química , Eritritol/análogos & derivados , Eritritol/metabolismo , Fosfomicina/química , Fosfomicina/farmacologia , Manganês/química , Manganês/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium tuberculosis/química , NADP/química , NADP/metabolismo , Ligação Proteica , Alinhamento de Sequência , Fosfatos Açúcares/metabolismo
7.
Eur J Med Chem ; 238: 114490, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35660251

RESUMO

The ever-increasing number of bacteria resistant to the currently available antibacterial agents is a great medical problem today, and new antibiotics with novel mechanisms of action are urgently needed. Among the validated antibacterial drug targets against which new classes of antibiotics might be directed is bacterial type I signal peptidase (SPase I), an essential part of the Tat and Sec secretory systems. SPase I is responsible for the hydrolysis of the N-terminal signal peptides from proteins secreted across the cytoplasmic membrane and plays a key role in bacterial viability and virulence. This review focuses on the antibacterial activity of natural and synthetic SPase I inhibitors reported to date, namely ß-lactams, lipopeptides, and arylomycins, but also an example of SPase I activator was presented.


Assuntos
Proteínas de Membrana , Serina Endopeptidases , Antibacterianos/farmacologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Serina Endopeptidases/metabolismo
8.
ACS Infect Dis ; 8(3): 482-498, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35184552

RESUMO

Type II NADH dehydrogenase (NDH-2) is an essential component of electron transfer in many microbial pathogens but has remained largely unexplored as a potential drug target. Previously, quinolinyl pyrimidines were shown to inhibit Mycobacterium tuberculosis NDH-2, as well as the growth of the bacteria [Shirude, P. S.; ACS Med. Chem. Lett. 2012, 3, 736-740]. Here, we synthesized a number of novel quinolinyl pyrimidines and investigated their properties. In terms of inhibition of the NDH-2 enzymes from M. tuberculosis and Mycobacterium smegmatis, the best compounds were of similar potency to previously reported inhibitors of the same class (half-maximal inhibitory concentration (IC50) values in the low-µM range). However, a number of the compounds had much better activity against Gram-negative pathogens, with minimum inhibitory concentrations (MICs) as low as 2 µg/mL. Multivariate analyses (partial least-squares (PLS) and principle component analysis (PCA)) showed that overall ligand charge was one of the most important factors in determining antibacterial activity, with patterns that varied depending on the particular bacterial species. In some cases (e.g., mycobacteria), there was a clear correlation between the IC50 values and the observed MICs, while in other instances, no such correlation was evident. When tested against a panel of protozoan parasites, the compounds failed to show activity that was not linked to cytotoxicity. Further, a strong correlation between hydrophobicity (estimated as clog P) and cytotoxicity was revealed; more hydrophobic analogues were more cytotoxic. By contrast, antibacterial MIC values and cytotoxicity were not well correlated, suggesting that the quinolinyl pyrimidines can be optimized further as antimicrobial agents.


Assuntos
Mycobacterium tuberculosis , NADH Desidrogenase , Testes de Sensibilidade Microbiana , NAD , Pirimidinas/farmacologia
9.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 5): 403-14, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21543842

RESUMO

A number of pathogens, including the causative agents of tuberculosis and malaria, synthesize isopentenyl diphosphate via the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway rather than the classical mevalonate pathway found in humans. As part of a structure-based drug-discovery program against tuberculosis, IspD, the enzyme that carries out the third step in the MEP pathway, was targeted. Constructs of both the Mycobacterium smegmatis and the Mycobacterium tuberculosis enzymes that were suitable for structural and inhibitor-screening studies were engineered. Two crystal structures of the M. smegmatis enzyme were produced, one in complex with CTP and the other in complex with CMP. In addition, the M. tuberculosis enzyme was crystallized in complex with CTP. Here, the structure determination and crystallographic refinement of these crystal forms and the enzymatic characterization of the M. tuberculosis enzyme construct are reported. A comparison with known IspD structures allowed the definition of the structurally conserved core of the enzyme. It indicates potential flexibility in the enzyme and in particular in areas close to the active site. These well behaved constructs provide tools for future target-based screening of potential inhibitors. The conserved nature of the extended active site suggests that any new inhibitor will potentially exhibit broad-spectrum activity.


Assuntos
Proteínas de Bactérias/química , Eritritol/análogos & derivados , Mycobacterium smegmatis/enzimologia , Mycobacterium tuberculosis/enzimologia , Fosfatos Açúcares/metabolismo , Tuberculose/enzimologia , Sequência de Aminoácidos , Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Eritritol/metabolismo , Hemiterpenos/metabolismo , Humanos , Dados de Sequência Molecular , Mycobacterium smegmatis/química , Mycobacterium tuberculosis/química , Compostos Organofosforados/metabolismo , Alinhamento de Sequência , Tuberculose/tratamento farmacológico
10.
Plant Mol Biol ; 77(1-2): 33-45, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21584858

RESUMO

Scots pine (Pinus sylvestris) secretes a number of small, highly-related, disulfide-rich proteins (Sp-AMPs) in response to challenges with fungal pathogens such as Heterobasidion annosum, although their biological role has been unknown. Here, we examined the expression patterns of these genes, as well as the structure and function of the encoded proteins. Northern blots and quantitative real time PCR showed increased levels of expression that are sustained during the interactions of host trees with pathogens, but not non-pathogens, consistent with a function in conifer tree defenses. Furthermore, the genes were up-regulated after treatment with salicylic acid and an ethylene precursor, 1-aminocyclopropane-1-carboxylic-acid, but neither methyl jasmonate nor H(2)O(2) induced expression, indicating that Sp-AMP gene expression is independent of the jasmonic acid signaling pathways. The cDNA encoding one of the proteins was cloned and expressed in Pichia pastoris. The purified protein had antifungal activity against H. annosum, and caused morphological changes in its hyphae and spores. It was directly shown to bind soluble and insoluble ß-(1,3)-glucans, specifically and with high affinity. Furthermore, addition of exogenous glucan is linked to higher levels of Sp-AMP expression in the conifer. Homology modeling and sequence comparisons suggest that a conserved patch on the surface of the globular Sp-AMP is a carbohydrate-binding site that can accommodate approximately four sugar units. We conclude that these proteins belong to a new family of antimicrobial proteins (PR-19) that are likely to act by binding the glucans that are a major component of fungal cell walls.


Assuntos
Pinus sylvestris/metabolismo , Proteínas de Plantas/metabolismo , beta-Glucanas/metabolismo , Acetatos/farmacologia , Sequência de Aminoácidos , Aminoácidos Cíclicos/farmacologia , Basidiomycota/metabolismo , Basidiomycota/fisiologia , Parede Celular/metabolismo , Clonagem Molecular , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Imunidade Inata , Oxilipinas/farmacologia , Pichia/genética , Pinus sylvestris/microbiologia , Proteínas de Plantas/química , Domínios e Motivos de Interação entre Proteínas , Ácido Salicílico/farmacologia , Alinhamento de Sequência , Transdução de Sinais , beta-Glucanas/química
11.
J Org Chem ; 76(21): 8986-98, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21936546

RESUMO

Cinnamaldehyde derivatives were synthesized in good to excellent yields in one step by a mild and selective, base-free palladium(II)-catalyzed oxidative Heck reaction starting from acrolein and various arylboronic acids. Prepared α,ß-unsaturated aldehydes were used for synthesis of novel α-aryl substituted fosmidomycin analogues, which were evaluated for their inhibition of Mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate reductoisomerase. IC(50) values between 0.8 and 27.3 µM were measured. The best compound showed activity comparable to that of the most potent previously reported α-aryl substituted fosmidomycin-class inhibitor.


Assuntos
Acroleína/análogos & derivados , Aldose-Cetose Isomerases/antagonistas & inibidores , Aldose-Cetose Isomerases/síntese química , Antituberculosos/química , Antituberculosos/síntese química , Fosfomicina/análogos & derivados , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/síntese química , Mycobacterium tuberculosis/química , Oxirredutases/antagonistas & inibidores , Oxirredutases/síntese química , Acroleína/síntese química , Acroleína/química , Antituberculosos/farmacologia , Catálise , Fosfomicina/síntese química , Fosfomicina/química , Fosfomicina/farmacologia , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Oxirredução , Paládio/química , Ligação Proteica
12.
Eur J Med Chem ; 224: 113699, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352713

RESUMO

Oligopeptide boronates with a lipophilic tail are known to inhibit the type I signal peptidase in E. coli, which is a promising drug target for developing novel antibiotics. Antibacterial activity depends on these oligopeptides having a cationic modification to increase their permeation. Unfortunately, this modification is associated with cytotoxicity, motivating the need for novel approaches. The sulfonimidamide functionality has recently gained much interest in drug design and discovery, as a means of introducing chirality and an imine-handle, thus allowing for the incorporation of additional substituents. This in turn can tune the chemical and biological properties, which are here explored. We show that introducing the sulfonimidamide between the lipophilic tail and the peptide in a series of signal peptidase inhibitors resulted in antibacterial activity, while the sulfonamide isostere and previously known non-cationic analogs were inactive. Additionally, we show that replacing the sulfonamide with a sulfonimidamide resulted in decreased cytotoxicity, and similar results were seen by adding a cationic sidechain to the sulfonimidamide motif. This is the first report of incorporation of the sulfonimidamide functional group into bioactive peptides, more specifically into antibacterial oligopeptides, and evaluation of its biological effects.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Oligopeptídeos/farmacologia , Inibidores de Proteases/farmacologia , Sulfonamidas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli/efeitos dos fármacos , Células Hep G2 , Humanos , Proteínas de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Serina Endopeptidases/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfonamidas/química
13.
Plant Mol Biol ; 71(3): 277-89, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19629717

RESUMO

Chitinases help plants defend themselves against fungal attack, and play roles in other processes, including development. The catalytic modules of most plant chitinases belong to glycoside hydrolase family 19. We report here x-ray structures of such a module from a Norway spruce enzyme, the first for any family 19 class IV chitinase. The bi-lobed structure has a wide cleft lined by conserved residues; the most interesting for catalysis are Glu113, the proton donor, and Glu122, believed to be a general base that activate a catalytic water molecule. Comparisons to class I and II enzymes show that loop deletions in the class IV proteins make the catalytic cleft shorter and wider; from modeling studies, it is predicted that only three N-acetylglucosamine-binding subsites exist in class IV. Further, the structural comparisons suggest that the family 19 enzymes become more closed on substrate binding. Attempts to solve the structure of the complete protein including the associated chitin-binding module failed, however, modeling studies based on close relatives indicate that the binding module recognizes at most three N-acetylglucosamine units. The combined results suggest that the class IV enzymes are optimized for shorter substrates than the class I and II enzymes, or alternatively, that they are better suited for action on substrates where only small regions of chitin chain are accessible. Intact spruce chitinase is shown to possess antifungal activity, which requires the binding module; removing this module had no effect on measured chitinase activity.


Assuntos
Quitinases/química , Picea/enzimologia , Proteínas de Plantas/química , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Antifúngicos/farmacologia , Basidiomycota/efeitos dos fármacos , Basidiomycota/crescimento & desenvolvimento , Catálise , Domínio Catalítico , Quitinases/genética , Quitinases/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Picea/genética , Pichia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Homologia de Sequência de Aminoácidos , Tirosina/genética , Tirosina/metabolismo
14.
J Am Chem Soc ; 131(21): 7334-43, 2009 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-19469578

RESUMO

Directed evolution of enzymes as enantioselective catalysts in organic chemistry is an alternative to traditional asymmetric catalysis using chiral transition-metal complexes or organocatalysts, the different approaches often being complementary. Moreover, directed evolution studies allow us to learn more about how enzymes perform mechanistically. The present study concerns a previously evolved highly enantioselective mutant of the epoxide hydrolase from Aspergillus niger in the hydrolytic kinetic resolution of racemic glycidyl phenyl ether. Kinetic data, molecular dynamics calculations, molecular modeling, inhibition experiments, and X-ray structural work for the wild-type (WT) enzyme and the best mutant reveal the basis of the large increase in enantioselectivity (E = 4.6 versus E = 115). The overall structures of the WT and the mutant are essentially identical, but dramatic differences are observed in the active site as revealed by the X-ray structures. All of the experimental and computational results support a model in which productive positioning of the preferred (S)-glycidyl phenyl ether, but not the (R)-enantiomer, forms the basis of enhanced enantioselectivity. Predictions regarding substrate scope and enantioselectivity of the best mutant are shown to be possible.


Assuntos
Evolução Molecular Direcionada , Epóxido Hidrolases/química , Aspergillus niger/enzimologia , Cinética , Mutação , Estereoisomerismo , Especificidade por Substrato
15.
Bioorg Med Chem Lett ; 19(23): 6649-54, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19846301

RESUMO

The Rv3588c gene product of Mycobacterium tuberculosis, a beta-carbonic anhydrase (CA, EC 4.2.1.1) denominated here mtCA 2, shows the highest catalytic activity for CO(2) hydration (k(cat) of 9.8 x 10(5)s(-1), and k(cat)/K(m) of 9.3 x 10(7)M(-1)s(-1)) among the three beta-CAs encoded in the genome of this pathogen. A series of sulfonamides/sulfamates was assayed for their interaction with mtCA 2, and some diazenylbenzenesulfonamides were synthesized from sulfanilamide/metanilamide by diazotization followed by coupling with amines or phenols. Several low nanomolar mtCA 2 inhibitors have been detected among which acetazolamide, ethoxzolamide and some 4-diazenylbenzenesulfonamides (K(I)s of 9-59 nM). As the Rv3588c gene was shown to be essential to the growth of M. tuberculosis, inhibition of this enzyme may be relevant for the design of antituberculosis drugs possessing a novel mechanism of action.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Mycobacterium tuberculosis/enzimologia , Sequência de Aminoácidos , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Domínio Catalítico , Desenho de Fármacos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mycobacterium tuberculosis/crescimento & desenvolvimento , Relação Estrutura-Atividade
16.
Bioorg Med Chem ; 16(10): 5501-13, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18462943

RESUMO

A combination of a literature survey, structure-based virtual screening and synthesis of a small library was performed to identify hits to the potential antimycobacterial drug target, glutamine synthetase. The best inhibitor identified from the literature survey was (2S,5R)-2,6-diamino-5-hydroxyhexanoic acid (4, IC(50) of 610+/-15microM). In the virtual screening 46,400 compounds were docked and subjected to a pharmacophore search. Of these compounds, 29 were purchased and tested in a biological assay, allowing three novel inhibitors containing an aromatic scaffold to be identified. Based on one of the hits from the virtual screening a small library of 15 analogues was synthesized producing four compounds that inhibited glutamine synthetase.


Assuntos
Aminoácidos/farmacologia , Caproatos/farmacologia , Desenho de Fármacos , Glutamato-Amônia Ligase/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Aminoácidos/química , Sítios de Ligação/efeitos dos fármacos , Caproatos/química , Simulação por Computador , Relação Dose-Resposta a Droga , Hidroxilisina/análogos & derivados , Modelos Moleculares , Conformação Molecular , Compostos Organofosforados , Bibliotecas de Moléculas Pequenas , Estereoisomerismo , Relação Estrutura-Atividade
17.
Eur J Med Chem ; 157: 1346-1360, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30196059

RESUMO

Type I signal peptidase, with its vital role in bacterial viability, is a promising but underexploited antibacterial drug target. In the light of steadily increasing rates of antimicrobial resistance, we have developed novel macrocyclic lipopeptides, linking P2 and P1' by a boronic ester warhead, capable of inhibiting Escherichia coli type I signal peptidase (EcLepB) and exhibiting good antibacterial activity. Structural modifications of the macrocyclic ring, the peptide sequence and the lipophilic tail led us to 14 novel macrocyclic boronic esters. It could be shown that macrocyclization is well tolerated in terms of EcLepB inhibition and antibacterial activity. Among the synthesized macrocycles, potent enzyme inhibitors in the low nanomolar range (e.g. compound 42f, EcLepB IC50 = 29 nM) were identified also showing good antimicrobial activity (e.g. compound 42b, E. coli WT MIC = 16 µg/mL). The unique macrocyclic boronic esters described here were based on previously published linear lipopeptidic EcLepB inhibitors in an attempt to address cytotoxicity and hemolysis. We show herein that structural changes to the macrocyclic ring influence both the cytotoxicity and hemolytic activity suggesting that the P2 to P1' linker provide means for optimizing off-target effects. However, for the present set of compounds we were not able to separate the antibacterial activity and cytotoxic effect.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Proteínas de Membrana/antagonistas & inibidores , Inibidores de Serina Proteinase/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/química , Ésteres/farmacologia , Células Hep G2 , Humanos , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Proteínas de Membrana/metabolismo , Estrutura Molecular , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade
18.
FEBS J ; 274(14): 3695-3703, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17608716

RESUMO

Brassica juncea chitinase is an endo-acting, pathogenesis-related protein that is classified into glycoside hydrolase family 19, with highest homology (50-60%) in its catalytic domain to class I plant chitinases. Here we report X-ray structures of the chitinase catalytic domain from wild-type (apo, as well as with chloride ions bound) and a Glu234Ala mutant enzyme, solved by molecular replacement and refined at 1.53, 1.8 and 1.7 A resolution, respectively. Confirming our earlier mutagenesis studies, the active-site residues are identified as Glu212 and Glu234. Glu212 is believed to be the catalytic acid in the reaction, whereas Glu234 is thought to have a dual role, both activating a water molecule in its attack on the anomeric carbon, and stabilizing the charged intermediate. The molecules in the various structures differ significantly in the conformation of a number of loops that border the active-site cleft. The differences suggest an opening and closing of the enzyme during the catalytic cycle. Chitin is expected to dock first near Glu212, which will protonate it. Conformational changes then bring Glu234 closer, allowing it to assist in the following steps. These observations provide important insights into catalysis in family 19 chitinases.


Assuntos
Brassica/enzimologia , Quitinases/química , Quitinases/metabolismo , Sítios de Ligação , Brassica/genética , Quitinases/classificação , Quitinases/genética , Cristalografia por Raios X , Modelos Moleculares , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
19.
Comb Chem High Throughput Screen ; 10(9): 783-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18478959

RESUMO

A microwave-enhanced, palladium-catalyzed protocol for the alpha-arylation of a protected glycine in neat water is described. This reaction proceeds rapidly, under non-inert conditions, to afford a range of phenylglycine derivatives in moderate to good yields. Based on this alpha-arylation, a number of aryl L-methionine-SR-sulfoximine (MSO) analogues were prepared and evaluated for their Mycobacterium tuberculosis glutamine synthetase (TB-GS) inhibitory activity.


Assuntos
Inibidores Enzimáticos/síntese química , Glutamato-Amônia Ligase/antagonistas & inibidores , Glicina/análogos & derivados , Hidrocarbonetos Cíclicos/química , Micro-Ondas , Mycobacterium tuberculosis/enzimologia , Água/química , Catálise , Glicina/síntese química , Metionina Sulfoximina/análogos & derivados , Metionina Sulfoximina/síntese química , Modelos Químicos , Paládio/química
20.
Protein Sci ; 15(7): 1628-37, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16751602

RESUMO

Epoxide hydrolases catalyze the conversion of epoxides to diols. The known functions of such enzymes include detoxification of xenobiotics, drug metabolism, synthesis of signaling compounds, and intermediary metabolism. In plants, epoxide hydrolases are thought to participate in general defense systems. In the present study, we report the first structure of a plant epoxide hydrolase, one of the four homologous enzymes found in potato. The structure was solved by molecular replacement and refined to a resolution of 1.95 A. Analysis of the structure allows a better understanding of the observed substrate specificities and activity. Further, comparisons with mammalian and fungal epoxide hydrolase structures reported earlier show the basis of differing substrate specificities in the various epoxide hydrolase subfamilies. Most plant enzymes, like the potato epoxide hydrolase, are expected to be monomers with a preference for substrates with long lipid-like substituents of the epoxide ring. The significance of these results in the context of biological roles and industrial applications is discussed.


Assuntos
Epóxido Hidrolases/química , Solanum tuberosum/enzimologia , Cristalografia por Raios X , Estrutura Molecular , Proteínas de Plantas/química , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa