Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Biol Lett ; 19(1): 98-115, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24563014

RESUMO

Cancer is the second leading cause of death in South Africa. The critical role that microtubules play in cell division makes them an ideal target for the development of chemotherapeutic drugs that prevent the hyperproliferation of cancer cells. The new in silico-designed estradiol analogue 2-ethyl-3-O-sulfamoylestra-1,3,5(10)16-tetraene (ESE-16) was investigated in terms of its in vitro antiproliferative effects on the esophageal carcinoma SNO cell line at a concentration of 0.18 µM and an exposure time of 24 h. Polarization-optical differential interference contrast and triple fluorescent staining (propidium iodide, Hoechst 33342 and acridine orange) revealed a decrease in cell density, metaphase arrest, and the occurrence of apoptotic bodies in the ESE-16-treated cells when compared to relevant controls. Treated cells also showed an increase in the presence of acidic vacuoles and lysosomes, suggesting the occurrence of autophagic processes. Cell death via autophagy was confirmed using the Cyto-ID autophagy detection kit and the aggresome detection assay. Results showed an increase in autophagic vacuole and aggresome formation in ESE-16 treated cells, confirming the induction of cell death via autophagy. Cell cycle progression demonstrated an increase in the sub-G1 fraction (indicative of the presence of apoptosis). In addition, a reduction in mitochondrial membrane potential was also observed, which suggests the involvement of apoptotic cell death induced by ESE-16 via the intrinsic apoptotic pathway. In this study, it was demonstrated that ESE-16 induces cell death via both autophagy and apoptosis in esophageal carcinoma cells. This study paves the way for future investigation into the role of ESE-16 in ex vivo and in vivo studies as a possible anticancer agent.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Estradiol/administração & dosagem , Estrenos/administração & dosagem , Sulfonamidas/administração & dosagem , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Estradiol/análogos & derivados , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
2.
Cell Biochem Funct ; 31(7): 566-74, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23307628

RESUMO

2-Methoxyestradiol, a natural metabolite of estradiol, exerts antiproliferative and antitumour properties in vitro and in vivo. Because of its low oral bioavailability, several promising analogues of 2-methoxyestradiol have been developed. In this study, the in vitro influence of the compound, 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10)16-tetraene (C19), a non-commercially available 17-ß-estradiol analogue, was tested on the breast adenocarcinoma MCF-7 cell line. The in vitro influence of 24 h exposure to 0.18 µM of C19 on MCF-7 cells was evaluated on cell morphology, cell cycle progression and possible induction of apoptosis and autophagy. Polarization-optical transmitted light differential interference contrast and fluorescence microscopy revealed the presence of cells blocked in metaphase, occurrence of apoptotic bodies and compromised cell density in C19-treated cells. Hallmarks of autophagy, namely an increase in the number of acidic vacuoles and lysosomes, were also observed in C19-treated samples. An increase in the number of cells present in the sub-G1 fraction, as well as a reduction in mitochondrial membrane potential was observed. No significant alterations in caspase 8 activity were observed. A twofold increase in aggresome formation was observed in C19-treated cells. C19 induced both apoptosis and autophagy in MCF-7 cells.


Assuntos
Antineoplásicos/farmacologia , Caspase 7/metabolismo , Caspase 8/metabolismo , Estradiol/análogos & derivados , Estradiol/farmacologia , Estrenos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sulfonamidas/farmacologia , Adenocarcinoma , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama , Feminino , Humanos , Células MCF-7 , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa