Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(9): 3930-3942, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37845497

RESUMO

Chronic cocaine exposure induces enduring neuroadaptations that facilitate motivated drug taking. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are known to modulate neuronal firing and pacemaker activity in ventral tegmental area (VTA) dopamine neurons. However, it remained unknown whether cocaine self-administration affects HCN channel function and whether HCN channel activity modulates motivated drug taking. We report that rat VTA dopamine neurons predominantly express Hcn3-4 mRNA, while VTA GABA neurons express Hcn1-4 mRNA. Both neuronal types display similar hyperpolarization-activated currents (Ih), which are facilitated by acute increases in cAMP. Acute cocaine application decreases voltage-dependent activation of Ih in VTA dopamine neurons, but not in GABA neurons. Unexpectedly, chronic cocaine self-administration results in enhanced Ih selectively in VTA dopamine neurons. This differential modulation of Ih currents is likely mediated by a D2 autoreceptor-induced decrease in cAMP as D2 (Drd2) mRNA is predominantly expressed in dopamine neurons, whereas D1 (Drd1) mRNA is barely detectable in the VTA. Moreover, chronically decreased cAMP via Gi-DREADD stimulation leads to an increase in Ih in VTA dopamine neurons and enhanced binding of HCN3/HCN4 with tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b), an auxiliary subunit that is known to facilitate HCN channel surface trafficking. Finally, we show that systemic injection and intra-VTA infusion of the HCN blocker ivabradine reduces cocaine self-administration under a progressive ratio schedule and produces a downward shift of the cocaine dose-response curve. Our results suggest that cocaine self-administration induces an upregulation of Ih in VTA dopamine neurons, while HCN inhibition reduces the motivation for cocaine intake.


Assuntos
Cocaína , Neurônios Dopaminérgicos , Ratos , Animais , Neurônios Dopaminérgicos/metabolismo , Área Tegmentar Ventral/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Regulação para Cima , Cocaína/farmacologia , RNA Mensageiro
2.
Mol Psychiatry ; 26(7): 3178-3191, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33093652

RESUMO

Enhancing endocannabinoid signaling produces anxiolytic- and antidepressant-like effects, but the neural circuits involved remain poorly understood. The medial habenula (MHb) is a phylogenetically-conserved epithalamic structure that is a powerful modulator of anxiety- and depressive-like behavior. Here, we show that a robust endocannabinoid signaling system modulates synaptic transmission between the MHb and its sole identified GABA input, the medial septum and nucleus of the diagonal band (MSDB). With RNAscope in situ hybridization, we demonstrate that key enzymes that synthesize or degrade the endocannabinoids 2-arachidonylglycerol (2-AG) or anandamide are expressed in the MHb and MSDB, and that cannabinoid receptor 1 (CB1) is expressed in the MSDB. Electrophysiological recordings in MHb neurons revealed that endogenously-released 2-AG retrogradely depresses GABA input from the MSDB. This endocannabinoid-mediated depolarization-induced suppression of inhibition (DSI) was limited by monoacylglycerol lipase (MAGL) but not by fatty acid amide hydrolase. Anatomic and optogenetic circuit mapping indicated that MSDB GABA neurons monosynaptically project to cholinergic neurons of the ventral MHb. To test the behavioral significance of this MSDB-MHb endocannabinoid signaling, we induced MSDB-specific knockout of CB1 or MAGL via injection of virally-delivered Cre recombinase into the MSDB of Cnr1loxP/loxP or MgllloxP/loxP mice. Relative to control mice, MSDB-specific knockout of CB1 or MAGL bidirectionally modulated 2-AG signaling in the ventral MHb and led to opposing effects on anxiety- and depressive-like behavior. Thus, depression of synaptic GABA release in the MSDB-ventral MHb pathway may represent a potential mechanism whereby endocannabinoids exert anxiolytic and antidepressant-like effects.


Assuntos
Endocanabinoides , Monoacilglicerol Lipases , Animais , Ansiedade , Camundongos , Monoacilglicerol Lipases/metabolismo , Receptor CB1 de Canabinoide/genética , Transdução de Sinais , Transmissão Sináptica
3.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293516

RESUMO

Physical exercise improves memory and cognition in physiological aging and Alzheimer's disease (AD), but the mechanisms remain poorly understood. Here, we test the hypothesis that Aß oligomer accumulation, neuroinflammation, and glial cell activation may lead to disruption of synaptic transmission in the prefrontal cortex of 3 × Tg-AD Mice, resulting in impairment of learning and memory. On the other hand, treadmill exercise could prevent the pathogenesis and exert neuroprotective effects. Here, we used immunohistochemistry, western blotting, enzyme-linked immunosorbent assay, and slice electrophysiology to analyze the levels of GSK3ß, Aß oligomers (Aß dimers and trimers), pro-inflammatory cytokines (IL-1ß, IL-6, and TNFα), the phosphorylation of CRMP2 at Thr514, and synaptic currents in pyramidal neurons in the prefrontal cortex. We show that 12-week treadmill exercise beginning in three-month-old mice led to the inhibition of GSK3ß kinase activity, decreases in the levels of Aß oligomers, pro-inflammatory cytokines (IL-1ß, IL-6, and TNFα), and the phosphorylation of CRMP2 at Thr514, reduction of microglial and astrocyte activation, and improvement of excitatory and inhibitory synaptic transmission of pyramidal neurons in the prefrontal cortex of 3 × Tg-AD Mice. Thus, treadmill exercise reduces neuroinflammation, glial cell activation and improves synaptic transmission in the prefrontal cortex in 3 × Tg-AD mice, possibly related to the inhibition of GSK3ß kinase activity.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Camundongos , Animais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Transgênicos , Doenças Neuroinflamatórias , Glicogênio Sintase Quinase 3 beta , Interleucina-6 , Transmissão Sináptica , Córtex Pré-Frontal/metabolismo , Microglia/metabolismo , Modelos Animais de Doenças
4.
J Physiol ; 596(18): 4511-4536, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30055019

RESUMO

KEY POINTS: With daily electrophysiological recordings and neurochemical analysis, we uncovered a transient period of synaptic imbalance between enhanced inhibition and suppressed excitation in rat visual cortical neurons from the end of the fourth toward the end of the fifth postnatal weeks. The expression of brain-derived neurotrophic factor (BDNF), which normally enhances excitation and suppresses inhibition, was down-regulated during that time, suggesting that this may contribute to the inhibition/excitation imbalance. An agonist of the BDNF receptor tropomyosin-related kinase B (TrkB) partially reversed the imbalance, whereas a TrkB antagonist accentuated the imbalance during the transient period. Monocular lid suture during the transient period is more detrimental to the function and neurochemical properties of visual cortical neurons than before or after this period. We regard the period of synaptic imbalance as the peak critical period of vulnerability, and its existence is necessary for neurons to transition from immaturity to a more mature state of functioning. ABSTRACT: The mammalian visual cortex is immature at birth and undergoes postnatal structural and functional adjustments. The exact timing of the vulnerable period in rodents remains unclear. The critical period is characterized by inhibitory GABAergic maturation reportedly dependent on brain-derived neurotrophic factor (BDNF). However, most of the studies were performed on experimental/transgenic animals, questioning the relationship in normal animals. The present study aimed to conduct in-depth analyses of the synaptic and neurochemical development of visual cortical neurons in normal and monocularly-deprived rats and to determine specific changes, if any, during the critical period. We found that (i) against a gradual increase in excitation and inhibition with age, a transient period of synaptic and neurochemical imbalance existed with suppressed excitation and enhanced inhibition at postnatal days 28 to 33/34; (ii) during this window, the expression of BDNF and tropomyosin-related kinase B (TrkB) receptors decreased, along with glutamatergic GluN1 and GluA1 receptors and the metabolic marker cytochrome oxidase, whereas that of GABAA Rα1 receptors continued to rise; (iii) monocular deprivation reduced both excitatory and inhibitory synaptic activity and neurochemicals mainly during this period; and (iv) in vivo TrkB agonist partially reversed the synaptic imbalance in normal and monocularly-deprived neurons during this time, whereas a TrkB antagonist accentuated the imbalance. Thus, our findings highlight a transitory period of synaptic imbalance with a negative relationship between BDNF and inhibitory GABA. This brief critical period may be necessary in transitioning from an immature to a more mature state of visual cortical functioning.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neurogênese , Sinapses/fisiologia , Potenciais Sinápticos , Córtex Visual/fisiologia , Animais , Feminino , Masculino , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Receptor trkB/metabolismo , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/metabolismo
5.
Neuropsychopharmacology ; 49(5): 854-863, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37752222

RESUMO

Psychedelics such as psilocybin show great promise for the treatment of depression and PTSD, but their long duration of action poses practical limitations for patient access. 4-OH-DiPT is a fast-acting and shorter-lasting derivative of psilocybin. Here we characterized the pharmacological profile of 4-OH-DiPT and examined its impact on fear extinction learning as well as a potential mechanism of action. First, we profiled 4-OH-DiPT at all 12 human 5-HT GPCRs. 4-OH-DiPT showed strongest agonist activity at all three 5-HT2A/2B/2C receptors with near full agonist activity at 5-HT2A. Notably, 4-OH-DiPT had comparable activity at mouse and human 5-HT2A/2B/2C receptors. In a fear extinction paradigm, 4-OH-DiPT significantly reduced freezing responses to conditioned cues in a dose-dependent manner with a greater potency in female mice than male mice. Female mice that received 4-OH-DiPT before extinction training had reduced avoidance behaviors several days later in the light dark box, elevated plus maze and novelty-suppressed feeding test compared to controls, while male mice did not show significant differences. 4-OH-DiPT produced robust increases in spontaneous inhibitory postsynaptic currents (sIPSCs) in basolateral amygdala (BLA) principal neurons and action potential firing in BLA interneurons in a 5-HT2A-dependent manner. RNAscope demonstrates that Htr2a mRNA is expressed predominantly in BLA GABA interneurons, Htr2c mRNA is expressed in both GABA interneurons and principal neurons, while Htr2b mRNA is absent in the BLA. Our findings suggest that 4-OH-DiPT activates BLA interneurons via the 5-HT2A receptor to enhance GABAergic inhibition of BLA principal neurons, which provides a potential mechanism for suppressing learned fear.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Masculino , Feminino , Camundongos , Humanos , Animais , Psilocibina , Serotonina/farmacologia , Extinção Psicológica , Medo/fisiologia , Neurônios , Ácido gama-Aminobutírico , RNA Mensageiro
6.
Cells ; 11(2)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053360

RESUMO

Alzheimer's disease (AD) is characterized by deficits in learning and memory. A pathological feature of AD is the alterations in the number and size of synapses, axon length, dendritic complexity, and dendritic spine numbers in the hippocampus and prefrontal cortex. Treadmill exercise can enhance synaptic plasticity in mouse or rat models of stroke, ischemia, and dementia. The aim of this study was to examine the effects of treadmill exercise on learning and memory, and structural synaptic plasticity in 3×Tg-AD mice, a mouse model of AD. Here, we show that 12 weeks treadmill exercise beginning in three-month-old mice improves spatial working memory in six-month-old 3×Tg-AD mice, while non-exercise six-month-old 3×Tg-AD mice exhibited impaired spatial working memory. To investigate potential mechanisms for the treadmill exercise-induced improvement of spatial learning and memory, we examined structural synaptic plasticity in the hippocampus and prefrontal cortex of six-month-old 3×Tg-AD mice that had undergone 12 weeks of treadmill exercise. We found that treadmill exercise led to increases in synapse numbers, synaptic structural parameters, the expression of synaptophysin (Syn, a presynaptic marker), the axon length, dendritic complexity, and the number of dendritic spines in 3×Tg-AD mice and restored these parameters to similar levels of non-Tg control mice without treadmill exercise. In addition, treadmill exercise also improved these parameters in non-Tg control mice. Strengthening structural synaptic plasticity may represent a potential mechanism by which treadmill exercise prevents decline in spatial learning and memory and synapse loss in 3×Tg-AD mice.


Assuntos
Hipocampo/fisiopatologia , Transtornos da Memória/prevenção & controle , Transtornos da Memória/fisiopatologia , Plasticidade Neuronal/fisiologia , Condicionamento Físico Animal , Córtex Pré-Frontal/fisiopatologia , Aprendizagem Espacial , Animais , Axônios/metabolismo , Espinhas Dendríticas/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos Transgênicos , Córtex Pré-Frontal/metabolismo , Sinapses/patologia , Sinaptofisina/metabolismo
7.
Biomedicines ; 10(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892676

RESUMO

In addition to motor dysfunction, patients with Parkinson's disease (PD) are often affected by neuropsychiatric disorders, such as anxiety and depression. In animal models, activation of the endocannabinoid (eCB) system produces anxiolytic and antidepressant-like behavioral effects. CB2 agonists have demonstrated neuroprotective effects against neurotoxin-induced dopamine neuron loss and deficits in motor function. However, it remains unknown whether CB2 agonism ameliorates anxiogenic- and depressive-like behaviors in PD models. Here, we report that the selective CB2 agonist GW842166x exerted neuroprotective effects against 6-hydroxydopamine (6-OHDA)-induced loss of dopaminergic terminals and dopamine release in the striatum, which were blocked by the CB2 antagonist AM630. We found that 6-OHDA-treated mice exhibited anxiogenic- and depressive-like behaviors in the open-field, sucrose preference, novelty-suppressed feeding, marble burying, and forced swim tests but did not show significant changes in the elevated plus-maze and light-dark box test. GW842166x treatments ameliorated 6-OHDA-induced anxiogenic- and depressive-like behaviors, but the effects were blocked by CB2 antagonism, suggesting a CB2-dependent mechanism. These results suggest that the CB2 agonist GW842166x not only reduces 6-OHDA-induced motor function deficits but also anxiogenic- and depressive-like behaviors in 6-OHDA mouse models of PD.

8.
Elife ; 112022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35993549

RESUMO

Repeated exposure to drugs of abuse results in an upregulation of cAMP signaling in the mesolimbic dopamine system, a molecular adaptation thought to be critically involved in the development of drug dependence. Exchange protein directly activated by cAMP (Epac2) is a major cAMP effector abundantly expressed in the brain. However, it remains unknown whether Epac2 contributes to cocaine reinforcement. Here, we report that Epac2 in the mesolimbic dopamine system promotes cocaine reinforcement via enhancement of dopamine release. Conditional knockout of Epac2 from midbrain dopamine neurons (Epac2-cKO) and the selective Epac2 inhibitor ESI-05 decreased cocaine self-administration in mice under both fixed-ratio and progressive-ratio reinforcement schedules and across a broad range of cocaine doses. In addition, Epac2-cKO led to reduced evoked dopamine release, whereas Epac2 agonism robustly enhanced dopamine release in the nucleus accumbens in vitro. This mechanism is central to the behavioral effects of Epac2 disruption, as chemogenetic stimulation of ventral tegmental area (VTA) dopamine neurons via deschloroclozapine (DCZ)-induced activation of Gs-DREADD increased dopamine release and reversed the impairment of cocaine self-administration in Epac2-cKO mice. Conversely, chemogenetic inhibition of VTA dopamine neurons with Gi-DREADD reduced dopamine release and cocaine self-administration in wild-type mice. Epac2-mediated enhancement of dopamine release may therefore represent a novel and powerful mechanism that contributes to cocaine reinforcement.


Assuntos
Cocaína , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo , Camundongos , Área Tegmentar Ventral/fisiologia
9.
Sci Adv ; 8(35): eabo1440, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054363

RESUMO

Physical exercise is rewarding and protective against drug abuse and addiction. However, the neural mechanisms underlying these actions remain unclear. Here, we report that long-term wheel-running produced a more robust increase in c-fos expression in the red nucleus (RN) than in other brain regions. Anatomic and functional assays demonstrated that most RN magnocellular portion (RNm) neurons are glutamatergic. Wheel-running activates a subset of RNm glutamate neurons that project to ventral tegmental area (VTA) dopamine neurons. Optogenetic stimulation of this pathway was rewarding, as assessed by intracranial self-stimulation and conditioned place preference, whereas optical inhibition blocked wheel-running behavior. Running wheel access decreased cocaine self-administration and cocaine seeking during extinction. Last, optogenetic stimulation of the RNm-to-VTA glutamate pathway inhibited responding to cocaine. Together, these findings indicate that physical exercise activates a specific RNm-to-VTA glutamatergic pathway, producing exercise reward and reducing cocaine intake.

10.
Neuropharmacology ; 201: 108830, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34626665

RESUMO

Ibudilast is a non-selective phosphodiesterase (PDE) inhibitor and glial cell modulator which has shown great promise for the treatment of drug and alcohol use disorders in recent clinical studies. However, it is unknown whether and how ibudilast affects cocaine seeking behavior. Here we show that systemic administration of ibudilast dose-dependently reduced cocaine self-administration under fixed- and progressive-ratio reinforcement schedules in rats and shifted cocaine dose-response curves downward. In addition, ibudilast decreased cocaine prime- and cue-induced reinstatement of cocaine seeking. These results indicate that ibudilast was effective in reducing the reinforcing effects of cocaine and relapse to cocaine seeking. Chronic cocaine exposure induces cAMP-related neuroadaptations in the reward circuitry of the brain. To investigate potential mechanisms for ibudilast-induced attenuation of cocaine self-administration, we recorded from ventral tegmental area (VTA) dopamine neurons in ex vivo midbrain slices prepared from rats that had undergone saline and cocaine self-administration. We found cocaine self-administration led to a decrease in inhibitory postsynaptic currents (IPSCs), an increase in the AMPAR/NMDAR ratio, and an increase in the excitation to inhibition (E/I) ratio. Ibudilast pretreatments enhanced GABAergic inhibition and did not further change cocaine-induced potentiation of excitation, leading to normalization of the E/I ratio. Restoration of the balance between excitation and inhibition in VTA dopamine neurons may contribute to the attenuation of cocaine self-administration by ibudilast.


Assuntos
Comportamento Animal/efeitos dos fármacos , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Transtornos Relacionados ao Uso de Cocaína/psicologia , Cocaína/administração & dosagem , Cocaína/efeitos adversos , Sinais (Psicologia) , Comportamento de Procura de Droga/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Esquema de Reforço , Animais , Transtornos Relacionados ao Uso de Cocaína/etiologia , Neurônios Dopaminérgicos/fisiologia , Relação Dose-Resposta a Droga , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Ratos Long-Evans , Autoadministração , Área Tegmentar Ventral/fisiologia
11.
eNeuro ; 7(4)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719103

RESUMO

Action potential (AP) burst firing caused by the activation of low-voltage-activated T-type Ca2+ channels is a unique mode of neuronal firing. T-type channels have been implicated in diverse physiological and pathophysiological processes, including epilepsy, autism, and mood regulation, but the brain structures involved remain incompletely understood. The medial habenula (MHb) is an epithalamic structure implicated in anxiety-like and withdrawal behavior. Previous studies have shown that MHb neurons fire tonic APs at a frequency of ∼2-10 Hz or display depolarized low-amplitude membrane oscillations. Here, we report in C57BL/6J mice that a subpopulation of MHb neurons are capable of firing transient, high-frequency AP bursts mediated by T-type channels. Burst firing was observed following rebounding from hyperpolarizing current injections or during depolarization from hyperpolarized membrane potentials in ∼20% of MHb neurons. It was rarely observed at baseline but could be evoked in MHb neurons displaying different initial activity states. Further, we show that T-type channel mRNA, in particular Cav3.1, is expressed in the MHb in both cholinergic and substance P-ergic neurons. Pharmacological Cav3 antagonism blocked both burst firing and evoked Ca2+ currents in MHb neurons. Additionally, we observed high-frequency AP doublet firing at sustained depolarized membrane potentials that was independent of T-type channels. Thus, there is a greater diversity of AP firing patterns in MHb neurons than previously identified, including T-type channel-mediated burst firing, which may uniquely contribute to behaviors with relevance to neuropsychiatric disease.


Assuntos
Canais de Cálcio Tipo T , Habenula , Potenciais de Ação , Animais , Cálcio , Canais de Cálcio Tipo T/metabolismo , Habenula/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
12.
Saudi J Biol Sci ; 26(6): 1194-1206, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31516349

RESUMO

OBJECTIVE: This study aims to investigate the effects of TRPV4 on acute hypoxic exercise-induced central fatigue, in order to explore the mechanism in central for exercise capacity decline of athletes in the early stage of altitude training. METHODS: 120 male Wistar rats were randomly divided into 12 groups: 4 normoxia groups (quiet group, 5-level group, 8-level group, exhausted group), 4 groups at simulated 2500 m altitude (grouping as before), 4 groups at simulated 4500 m altitude (grouping as before), 10 in each group. With incremental load movement, materials were drawn corresponding to the load. Intracellular calcium ion concentration was measured by HE staining, enzyme-linked immunosorbent assay, immunohistochemistry, RT-qPCR, Fluo-4/AM and Fura-2/AM fluorescence staining. RESULTS: (1) Hypoxic 2-5 groups showed obvious venous congestion, with symptoms similar to normoxia-8 group; Hypoxic 2-8 groups showed meningeal loosening edema, infra-meningeal venous congestion, with symptoms similar to normoxia-exhausted group and hypoxic 1-exhaused group. (2) For 5,6-EET, regardless of normoxic or hypoxic environment, significant or very significant differences existed between each exercise load group (normoxic - 5 level 20.58 ±â€¯0.66 pg/mL, normoxic - 8 level 23.15 ±â€¯0.46 pg/mL, normoxic - exhausted 26.66 ±â€¯0.71 pg/mL; hypoxic1-5 level 21.72 ±â€¯0.43 pg/mL, hypoxic1-8 level 24.73 ±â€¯0.69 pg/mL, hypoxic 1-exhausted 28.68 ±â€¯0.48 pg/mL; hypoxic2-5 level 22.75 ±â€¯0.20 pg/mL, hypoxic2-8 level 25.62 ±â€¯0.39 pg/mL, hypoxic 2-exhausted 31.03 ±â€¯0.41 pg/mL) and quiet group in the same environment(normoxic-quiet 18.12 ±â€¯0.65 pg/mL, hypoxic 1-quiet 19.94 ±â€¯0.43 pg/mL, hypoxic 2-quiet 21.72 ±â€¯0.50 pg/mL). The 5,6-EET level was significantly or extremely significantly increased in hypoxic 1 environment and hypoxic 2 environment compared with normoxic environment under the same load. (3) With the increase of exercise load, expression of TRPV4 in the rat prefrontal cortex was significantly increased; hypoxic exercise groups showed significantly higher TRPV4 expression than the normoxic group. (4) Calcium ion concentration results showed that in the three environments, 8 level group (normoxic-8 190.93 ±â€¯6.11 nmol/L, hypoxic1-8 208.92 ±â€¯6.20 nmol/L, hypoxic2-8 219.13 ±â€¯4.57 nmol/L) showed very significant higher concentration compared to quiet state in the same environment (normoxic-quiet 107.11 ±â€¯0.49 nmol/L, hypoxic 1-quiet 128.48 ±â€¯1.51 nmol/L, hypoxic 2-quiet 171.71 ±â€¯0.84 nmol/L), and the exhausted group in the same environment (normoxic-exhausted 172.51 ±â€¯3.30 nmol/L, hypoxic 1-exhausted 164.54 ±â€¯6.01 nmol/L, hypoxic 2-exhausted 154.52 ±â€¯1.80 nmol/L) had significant lower concentration than 8-level group; hypoxic2-8 had significant higher concentration than normoxic-8. CONCLUSION: Acute hypoxic exercise increases the expression of TRPV4 channel in the prefrontal cortex of the brain. For a lower ambient oxygen concentration, expression of TRPV4 channel is higher, suggesting that TRPV4 channel may be one important mechanism involved in calcium overload in acute hypoxic exercise.

13.
Physiol Rep ; 6(5)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29516654

RESUMO

We have identified a critical period of respiratory development in rats at postnatal days P12-13, when inhibitory influence dominates and when the response to hypoxia is at its weakest. This critical period has significant implications for Sudden Infant Death Syndrome (SIDS), the cause of which remains elusive. One of the known risk factors for SIDS is prematurity. A common intervention used in premature infants is hyperoxic therapy, which, if prolonged, can alter the ventilatory response to hypoxia and induce sustained inhibition of lung alveolar growth and pulmonary remodeling. The goal of this study was to test our hypothesis that neonatal hyperoxia from postnatal day (P) 0 to P10 in rat pups perturbs the critical period by altering the normal progression of neurochemical development in brain stem respiratory-related nuclei. An in-depth, semiquantitative immunohistochemical study was undertaken at P10 (immediately after hyperoxia and before the critical period), P12 (during the critical period), P14 (immediately after the critical period), and P17 (a week after the cessation of hyperoxia). In agreement with our previous findings, levels of cytochrome oxidase, brain-derived neurotrophic factor (BDNF), TrkB (BDNF receptor), and several serotonergic proteins (5-HT1A and 2A receptors, 5-HT synthesizing enzyme tryptophan hydroxylase [TPH], and serotonin transporter [SERT]) all fell in several brain stem respiratory-related nuclei during the critical period (P12) in control animals. However, in hyperoxic animals, these neurochemicals exhibited a significant fall at P14 instead. Thus, neonatal hyperoxia delayed but did not eliminate the critical period of postnatal development in multiple brain stem respiratory-related nuclei, with little effect on the nonrespiratory cuneate nucleus.


Assuntos
Tronco Encefálico/metabolismo , Hiperóxia/metabolismo , Respiração , Animais , Tronco Encefálico/crescimento & desenvolvimento , Tronco Encefálico/fisiologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Hiperóxia/etiologia , Masculino , Oxigenoterapia/efeitos adversos , Ratos , Ratos Sprague-Dawley , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa