Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Toxicol ; 36(7): 1389-1401, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33764603

RESUMO

Silica nanoparticles (SiNPs) as one of the most productive nano-powder, has been extensively applied in various fields. There has been increasing concern about the adverse effects of SiNPs on the health of ecological organisms and human. The potential cardiovascular toxicity of SiNPs and involved mechanisms remain elusive. Hence, in this study, we investigated the cardiovascular toxicity of SiNPs (60 nm) and explored the underlying mechanisms using H9c2 cardiomyocytes. Results showed that SiNPs induced oxidative stress and activated the Nrf2/HO-1 antioxidant pathway. Autophagy was also activated by SiNPs. Interestingly, N-acetyl-L-cysteine (NAC)attenuated autophagy after inhibiting reactive oxygen species (ROS). Meanwhile, down-regulation of Nrf2 enhanced autophagy. In summary, these data indicated that SiNPs induce autophagy in H9c2 cardiomyocytes through oxidative stress, and the Nrf2/HO-1 pathway has a negative regulatory effect on autophagy. This study provides new evidence for the cardiovascular toxicity of SiNPs and provides a reference for the safe use of nanomaterials in the future.


Assuntos
Nanopartículas , Dióxido de Silício , Autofagia , Humanos , Fator 2 Relacionado a NF-E2/genética , Nanopartículas/toxicidade , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais , Dióxido de Silício/toxicidade
2.
Toxicol Mech Methods ; 30(9): 646-655, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32746757

RESUMO

The use of silica nanoparticles (SiNPs) is increasing in popularity; however, the emissions released during manufacturing, use and during the disposal stages potentially harm the environment. SiNPs can enter the body and cause cardiac toxicity indirectly or directly. However, toxicological data on SiNPs in cardiac cells in vitro, and the detailed molecular mechanisms by which damage is caused remain unclear. In the present study, oxidative stress-mediated apoptosis and cytotoxicity induced by SiNPs in H9c2 cells were examined. H9c2 cells were used to explore the mechanisms of toxicity by treating cells with 0, 25, 50, 100, and 200 µg/ml SiNPs, with and without 3 mM of the reactive oxygen species (ROS) scavenger, N-acetyl-l-cysteine (NAC), for 24 h. The results showed that SiNPs decreased cell viability and proliferation by increasing the release of lactate dehydrogenase (LDH) and inducing apoptosis in H9c2 cells. ROS levels were significantly increased in a dose-dependent manner. Additionally, the levels of superoxide dismutase (SOD), glutathione (GSH), and GSH-peroxidase (Px) were significantly decreased following exposure to SiNPs. Treatment with NAC attenuated LDH release; the levels of ROS, SOD, GSH, and GSH-Px production were increased, and SiNPs-induced mitochondrial pathway-dependent apoptosis was reduced. These results demonstrate that apoptosis and cytotoxicity induced by SiNPs in H9c2 cells are a result of ROS-mediated oxidative stress. These data suggest that exposure to SiNPs is a potential risk factor for cardiovascular disease.


Assuntos
Apoptose/efeitos dos fármacos , Cardiopatias/induzido quimicamente , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Dióxido de Silício/toxicidade , Animais , Cardiotoxicidade , Linhagem Celular , Relação Dose-Resposta a Droga , Cardiopatias/metabolismo , Cardiopatias/patologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Transdução de Sinais , Fatores de Tempo
3.
Sci Total Environ ; 872: 162187, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36781137

RESUMO

Short-chain chlorinated paraffins (SCCPs) are ubiquitously distributed in various environmental matrics due to their wide production and consumption globally in the past and ongoing production and use in some developing countries. SCCPs have been detected in various human samples including serum, milk, placenta, nail, and hair, and internal SCCP levels were found to be positively correlated with biomarkers of some diseases. While the environmental occurrence has been reported in a lot of studies, the toxicity and underlying molecular mechanisms of SCCPs remain largely unknown. The current tolerable daily intakes (TDIs) recommended by the world health organization/international programme on chemical safety (WHO/IPCS, 100 µg/kg bw/d) and the UK Committee on Toxicity (COT, 30 µg/kg bw/d) were obtained based on a no observed adverse effect level (NOAEL) of SCCP from the repeated-dose study (90 d exposure) in rodents performed nearly 40 years ago. Importantly, the health risks assessment of SCCPs in a variety of studies has shown that the estimated daily intakes (EDIs) may approach and even over the established TDI by UK COT. Furthermore, recent studies revealed that lower doses of SCCPs could also result in damage to multiple organs including the liver, kidney, and thyroid. Long-term effects of SCCPs at environmental-related doses are warranted.


Assuntos
Hidrocarbonetos Clorados , Parafina , Animais , Humanos , China , Cabelo/química , Hidrocarbonetos Clorados/análise , Leite/química , Parafina/análise
4.
Iran J Public Health ; 52(1): 1-9, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36824257

RESUMO

Background: Cell transplantation is a promising therapeutic strategy for pulmonary fibrosis. In order to clarify the alveolar type II epithelial cell potential utility in the treatment of lung disease, we conducted a meta-analysis, to evaluate alveolar type II epithelial cells in animal models of lung injury and pulmonary fibrosis. Methods: This review followed the recommendations from the PRISMA statements, Comprehensive retrieval method was used to search Embase, PubMed, Cochrane, Chinese Knowledge Infrastructure, VIP and Wanfang databases. A total of 7 studies and 286 model rats were included. Two researchers independently screened the identified studies, based on inclusion and exclusion criteria. All analyses were conducted using Review Manager V.5.3 software. The combined standard mean difference (SMD) and 95% confidence interval (CI) of data from the included studies were calculated using fixed or random-effects models. Results: The analysis of three outcome indexes showed that the heterogeneity of the oxygen saturation group was high (I2=85%), the lung weight group (I2=64%) was close to moderate heterogeneity, and the lung hydroxyproline content group (I2=0) was not heterogeneous. Conclusion: Meta-analysis showed that transplantation of alveolar type II epithelial cells has beneficial effects, and no obvious adverse reactions. Alveolar type II epithelial cell transplantation can significantly reduce the intervention group and lung hydroxyproline content weight, improve the blood oxygen saturation, lung histo-pathology showed significant improvement in pulmonary fibrosis.

5.
Chemosphere ; 291(Pt 2): 132944, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34793849

RESUMO

Microplastics (MPs) are new environmental pollutants and have received widespread attention in recent years, but the toxicity of the MPs remains to be fully elucidated. To explore the effect of MPs on hepatotoxicity in mice and unravel the mechanism of pyroptosis and ferroptosis in the process of liver injury, we treated mice with 5.0 µm polypropylene microplastics (MPs) at 0.1, 0.5 and 1 mg/mL for 4 weeks. Results revealed that MPs could damage liver structure and function with broken and reduced mitochondrial cristae, as well as increased levels of aspartate minotransferase (AST), alanine aminotransferase (ALT), AST/ALT, alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). Treatment with MPs resulted in pyroptosis as evidenced by increasing expressions of interleukin IL-1ß, IL-18. Additionally, MPs were shown to induce the NOD-like receptor protein 3 (NLRP3) inflammasomes and apoptosis associated speck-like protein (ASC) containing a caspase recruitment domain activation in liver tissue, enabling activation of Caspase-1-dependent signaling pathway induced by inflammatory stimuli resulting from oxidative stress. In addition, the increase of malondialdehyde (MDA) and decrease of glutathione (GSH) and superoxide dismutase (SOD) in the liver indicated that MPs could induce oxidative damage. Moreover, MPs induced lipid peroxidation in the liver of mice could activate the expression of ferroptosis related proteins, including iron metabolism, such as transferrin receptor (TFRC) was active but ferritin heavy chain 1 (FTH1) was inhibited; amino acid metabolism, such as XCT system and glutathione peroxidase 4 (GPX4) were inhibited; lipid metabolism, such as acyl-CoA synthetase long-chain family member 4 (ACSL4) was inhibited. Collectively, these findings evidenced that pyroptosis and ferroptosis occurred in MPs-induced liver injury accompanied by intense oxidative stress and inflammation.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ferroptose , Animais , Camundongos , Microplásticos , Estresse Oxidativo , Plásticos , Poliestirenos , Piroptose
6.
Artigo em Inglês | MEDLINE | ID: mdl-32602269

RESUMO

As a consequence of recent progression in biomedicine and nanotechnology, nanomedicine has emerged rapidly as a new discipline with extensive application of nanomaterials in biology, medicine, and pharmacology. Among the various nanomaterials, silica nanoparticles (SNPs) are particularly promising in nanomedicine applications due to their large specific surface area, adjustable pore size, facile surface modification, and excellent biocompatibility. This paper reviews the synthesis of SNPs and their recent usage in drug delivery, biomedical imaging, photodynamic and photothermal therapy, and other applications. In addition, the possible adverse effects of SNPs in nanomedicine applications are reviewed from reported in vitro and in vivo studies. Finally, the potential opportunities and challenges for the future use of SNPs are discussed. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Nanopartículas , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Nanomedicina , Nanotecnologia , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa