Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772718

RESUMO

The use of wearable devices has increased substantially in recent years. This, together with the rise of telemedicine, has led to the use of these types of devices in the healthcare field. In this work, we carried out a detailed study on the use of these devices (regarding the general trends); we analyzed the research works and devices marketed in the last 10 years. This analysis extracted relevant information on the general trend of use, as well as more specific aspects, such as the use of sensors, communication technologies, and diseases. A comparison was made between the commercial and research aspects linked to wearables in the healthcare field, and upcoming trends were analyzed.


Assuntos
Telemedicina , Dispositivos Eletrônicos Vestíveis , Previsões
2.
Sensors (Basel) ; 23(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37631672

RESUMO

Monkeypox is a smallpox-like disease that was declared a global health emergency in July 2022. Because of this resemblance, it is not easy to distinguish a monkeypox rash from other similar diseases; however, due to the novelty of this disease, there are no widely used databases for this purpose with which to develop image-based classification algorithms. Therefore, three significant contributions are proposed in this work: first, the development of a publicly available dataset of monkeypox images; second, the development of a classification system based on convolutional neural networks in order to automatically distinguish monkeypox marks from those produced by other diseases; and, finally, the use of explainable AI tools for ensemble networks. For point 1, free images of monkeypox cases and other diseases have been searched in government databases and processed until we are left with only a section of the skin of the patients in each case. For point 2, various pre-trained models were used as classifiers and, in the second instance, combinations of these were used to form ensembles. And, for point 3, this is the first documented time that an explainable AI technique (like GradCAM) is applied to the results of ensemble networks. Among all the tests, the accuracy reaches 93% in the case of single pre-trained networks, and up to 98% using an ensemble of three networks (ResNet50, EfficientNetB0, and MobileNetV2). Comparing these results with previous work, a substantial improvement in classification accuracy is observed.


Assuntos
Mpox , Humanos , Mpox/diagnóstico por imagem , Pele/diagnóstico por imagem , Redes Neurais de Computação , Algoritmos , Bases de Dados Factuais
3.
Sensors (Basel) ; 21(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800347

RESUMO

Falls are one of the leading causes of permanent injury and/or disability among the elderly. When these people live alone, it is convenient that a caregiver or family member visits them periodically. However, these visits do not prevent falls when the elderly person is alone. Furthermore, in exceptional circumstances, such as a pandemic, we must avoid unnecessary mobility. This is why remote monitoring systems are currently on the rise, and several commercial solutions can be found. However, current solutions use devices attached to the waist or wrist, causing discomfort in the people who wear them. The users also tend to forget to wear the devices carried in these positions. Therefore, in order to prevent these problems, the main objective of this work is designing and recollecting a new dataset about falls, falling risks and activities of daily living using an ankle-placed device obtaining a good balance between the different activity types. This dataset will be a useful tool for researchers who want to integrate the fall detector in the footwear. Thus, in this work we design the fall-detection device, study the suitable activities to be collected, collect the dataset from 21 users performing the studied activities and evaluate the quality of the collected dataset. As an additional and secondary study, we implement a simple Deep Learning classifier based on this data to prove the system's feasibility.


Assuntos
Acidentes por Quedas , Dispositivos Eletrônicos Vestíveis , Acelerometria , Acidentes por Quedas/prevenção & controle , Atividades Cotidianas , Idoso , Algoritmos , Tornozelo , Humanos , Redes Neurais de Computação
4.
Med Biol Eng Comput ; 62(8): 2281-2304, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38507122

RESUMO

Cervical cancer is caused in the vast majority of cases by the human papilloma virus (HPV) through sexual contact and requires a specific molecular-based analysis to be detected. As an HPV vaccine is available, the incidence of cervical cancer is up to ten times higher in areas without adequate healthcare resources. In recent years, liquid cytology has been used to overcome these shortcomings and perform mass screening. In addition, classifiers based on convolutional neural networks can be developed to help pathologists diagnose the disease. However, these systems always require the final verification of a pathologist to make a final diagnosis. For this reason, explainable AI techniques are required to highlight the most significant data to the healthcare professional, as it can be used to determine the confidence in the results and the areas of the image used for classification (allowing the professional to point out the areas he/she thinks are most important and cross-check them against those detected by the system in order to create incremental learning systems). In this work, a 4-phase optimization process is used to obtain a custom deep-learning classifier for distinguishing between 4 severity classes of cervical cancer with liquid-cytology images. The final classifier obtains an accuracy over 97% for 4 classes and 100% for 2 classes with execution times under 1 s (including the final report generation). Compared to previous works, the proposed classifier obtains better accuracy results with a lower computational cost.


Assuntos
Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/classificação , Feminino , Redes Neurais de Computação , Aprendizado Profundo , Algoritmos
5.
Comput Methods Programs Biomed ; 226: 107108, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36113183

RESUMO

BACKGROUND: Lung cancer has the highest mortality rate in the world, twice as high as the second highest. On the other hand, pathologists are overworked and this is detrimental to the time spent on each patient, diagnostic turnaround time, and their success rate. OBJECTIVE: In this work, we design, implement, and evaluate a diagnostic aid system for non-small cell lung cancer detection, using Deep Learning techniques. METHODS: The classifier developed is based on Artificial Intelligence techniques, obtaining an automatic classification result between healthy, adenocarcinoma and squamous cell carcinoma, given an histopathological image from lung tissue. Moreover, a report module based on Explainable Deep Learning techniques is included and gives the pathologist information about the image's areas used to classify the sample and the confidence of belonging to each class. RESULTS: The results show a system accuracy between 97.11 and 99.69%, depending on the number of classes classified, and a value of the area under ROC curve between 99.77 and 99.94%. CONCLUSIONS: The classification results obtain a substantial improvement according to previous works. Thanks to the given report, the time spent by the pathologist and the diagnostic turnaround time can be reduced.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Inteligência Artificial , Neoplasias Pulmonares/diagnóstico por imagem
6.
Biomed Signal Process Control ; 69: 102848, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36569387

RESUMO

The elderly is a continuous growth sector thanks to the life expectancy increase in Western society. This sector is especially at risk from the appearance of respiratory diseases and, therefore, is the most affected sector in the COVID-19 epidemic. Many of these elderly require continuous care in residences or by specialized caregivers, but these personal contacts put this sector at risk. In this work, an IoT system for elderly remote monitoring is studied, designed, developed and tested. This system is composed by a smart garment that records information from various physiological sensors in order to detect falls, sudden changes in body temperature, heart problems and heat stroke; This information is sent to a cloud server through a gateway located in the patient's residence, allowing to real-time monitor remotely patient's activity using a customized App, as well as receiving alerts in dangerous situations. This system has been tested with professional caregivers, obtaining usability and functionality surveys; and, in addition, a detailed power-consumption study has been carried out. The results, compared with other similar systems, demonstrate that the proposed one is useful, usable, works in real time and has a decent power consumption that allows the patient to carry it during all day without charging the battery.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa