Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(16): 6658-6671, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30973225

RESUMO

A comprehensive mechanistic study of electrocatalytic CO2 reduction by ruthenium 2,2':6',2″-terpyridine (tpy) pyridyl-carbene catalysts reveals the importance of stereochemical control to locate the strongly donating N-heterocyclic carbene ligand trans to the site of CO2 activation. Computational studies were undertaken to predict the most stable isomer for a range of reasonable intermediates in CO2 reduction, suggesting that the ligand trans to the reaction site plays a key role in dictating the energetic profile of the catalytic reaction. A new isomer of [Ru(tpy)(Mebim-py)(NCCH3)]2+ (Mebim-py is 1-methylbenzimidazol-2-ylidene-3-(2'-pyridine)) and both isomers of the catalytic intermediate [Ru(tpy)(Mebim-py)(CO)]2+ were synthesized and characterized. Experimental studies demonstrate that both isomeric precatalysts facilitate electroreduction of CO2 to CO in 95/5 MeCN/H2O with high activity and high selectivity. Cyclic voltammetry, infrared spectroelectrochemistry, and NMR spectroscopy studies provide a detailed mechanistic picture demonstrating an essential isomerization step in which the N-trans catalyst converts in situ to the C-trans variant. Insight into molecular electrocatalyst design principles emerge from this study. First, the use of an asymmetric ligand that places a strongly electron-donating ligand trans to the site of CO2 binding and activation is critical to high activity. Second, stereochemical control to maintain the desired isomer structure during catalysis is critical to performance. Finally, pairing the strongly donating pyridyl-carbene ligand with the redox-active tpy ligand proves to be useful in boosting activity without sacrificing overpotential. These design principles are considered in the context of surface-immobilized electrocatalysis.

2.
Chemistry ; 24(69): 18389-18392, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-29493841

RESUMO

To develop highly efficient catalysts for dehydrogenation of formic acid in water, we investigated several Cp*Ir catalysts with various amide ligands. The catalyst with an N-phenylpicolinamide ligand exhibited a TOF of 118 000 h-1 at 60 °C. A constant rate (TOF>35 000 h-1 ) was maintained for six hours, and a TON of 1 000 000 was achieved at 50 °C.

3.
Inorg Chem ; 57(9): 5486-5498, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29696969

RESUMO

The cobalt complexes CoIIL1(PF6)2 (1; L1 = 2,6-bis[2-(2,2'-bipyridin-6'-yl)ethyl]pyridine) and CoIIL2(PF6)2 (2; L2 = 2,6-bis[2-(4-methoxy-2,2'-bipyridin-6'-yl)ethyl]pyridine) were synthesized and used for photocatalytic CO2 reduction in acetonitrile. X-ray structures of complexes 1 and 2 reveal distorted trigonal-bipyramidal geometries with all nitrogen atoms of the ligand coordinated to the Co(II) center, in contrast to the common six-coordinate cobalt complexes with pentadentate polypyridine ligands, where a monodentate solvent completes the coordination sphere. Under electrochemical conditions, the catalytic current for CO2 reduction was observed near the Co(I/0) redox couple for both complexes 1 and 2 at E1/2 = -1.77 and -1.85 V versus Ag/AgNO3 (or -1.86 and -1.94 V vs Fc+/0), respectively. Under photochemical conditions with 2 as the catalyst, [Ru(bpy)3]2+ as a photosensitizer, tri- p-tolylamine (TTA) as a reversible quencher, and triethylamine (TEA) as a sacrificial electron donor, CO and H2 were produced under visible-light irradiation, despite the endergonic reduction of Co(I) to Co(0) by the photogenerated [Ru(bpy)3]+. However, bulk electrolysis in a wet CH3CN solution resulted in the generation of formate as the major product, indicating the facile production of Co(0) and [Co-H] n+ ( n = 1 and 0) under electrochemical conditions. The one-electron-reduced complex 2 reacts with CO to produce [Co0L2(CO)] with νCO = 1894 cm-1 together with [CoIIL2]2+ through a disproportionation reaction in acetonitrile, based on the spectroscopic and electrochemical data. Electrochemistry and time-resolved UV-vis spectroscopy indicate a slow CO binding rate with the [CoIL2]+ species, consistent with density functional theory calculations with CoL1 complexes, which predict a large structural change from trigonal-bipyramidal to distorted tetragonal geometry. The reduction of CO2 is much slower than the photochemical formation of [Ru(bpy)3]+ because of the large structural changes, spin flipping in the cobalt catalytic intermediates, and an uphill reaction for the reduction to Co(0) by the photoproduced [Ru(bpy)3]+.

4.
Phys Rev Lett ; 118(21): 219902, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28598652

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.113.176802.

5.
Faraday Discuss ; 198: 301-317, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28280836

RESUMO

We prepared electron-rich derivatives of [Ir(tpy)(ppy)Cl]+ with modification of the bidentate (ppy) or tridentate (tpy) ligands in an attempt to increase the reactivity for CO2 reduction and the ability to transfer hydrides (hydricity). Density functional theory (DFT) calculations reveal that complexes with dimethyl-substituted ppy have similar hydricities to the non-substituted parent complex, and photocatalytic CO2 reduction studies show selective CO formation. Substitution of tpy by bis(benzimidazole)-phenyl or -pyridine (L3 and L4, respectively) induces changes in the physical properties that are much more pronounced than from the addition of methyl groups to ppy. Theoretical data predict [Ir(L3)(ppy)(H)] as the strongest hydride donor among complexes studied in this work, but [Ir(L3)(ppy)(NCCH3)]+ cannot be reduced photochemically because the excited state reduction potential is only 0.52 V due to the negative ground state potential of -1.91 V. The excited state of [Ir(L4)(ppy)(NCCH3)]2+ is the strongest oxidant among complexes studied in this work and the singly-reduced species is formed readily upon photolysis in the presence of tertiary amines. Both [Ir(L3)(ppy)(NCCH3)]+ and [Ir(L4)(ppy)(NCCH3)]2+ exhibit electrocatalytic current for CO2 reduction. While a significantly greater overpotential is needed for the L3 complex, a small amount of formate (5-10%) generation in addition to CO was observed as predicted by the DFT calculations.

6.
Inorg Chem ; 55(9): 4582-94, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27077460

RESUMO

Ruthenium complexes with proton-responsive ligands [Ru(tpy)(nDHBP)(NCCH3)](CF3SO3)2 (tpy = 2,2':6',2″-terpyridine; nDHBP = n,n'-dihydroxy-2,2'-bipyridine, n = 4 or 6) were examined for reductive chemistry and as catalysts for CO2 reduction. Electrochemical reduction of [Ru(tpy)(nDHBP)(NCCH3)](2+) generates deprotonated species through interligand electron transfer in which the initially formed tpy radical anion reacts with a proton source to produce singly and doubly deprotonated complexes that are identical to those obtained by base titration. A third reduction (i.e., reduction of [Ru(tpy)(nDHBP-2H(+))](0)) triggers catalysis of CO2 reduction; however, the catalytic efficiency is strikingly lower than that of unsubstituted [Ru(tpy)(bpy)(NCCH3)](2+) (bpy = 2,2'-bipyridine). Cyclic voltammetry, bulk electrolysis, and spectroelectrochemical infrared experiments suggest the reactivity of CO2 at both the Ru center and the deprotonated quinone-type ligand. The Ru carbonyl formed by the intermediacy of a metallocarboxylic acid is stable against reduction, and mass spectrometry analysis of this product indicates the presence of two carbonates formed by the reaction of DHBP-2H(+) with CO2.

7.
Inorg Chem ; 54(11): 5114-23, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25691331

RESUMO

The catalytic cycle for the production of formic acid by CO2 hydrogenation and the reverse reaction have received renewed attention because they are viewed as offering a viable scheme for hydrogen storage and release. In this Forum Article, CO2 hydrogenation catalyzed by iridium complexes bearing sophisticated N^N-bidentate ligands is reported. We describe how a ligand containing hydroxy groups as proton-responsive substituents enhances the catalytic performance by an electronic effect of the oxyanions and a pendent-base effect through secondary coordination sphere interactions. In particular, [(Cp*IrCl)2(TH2BPM)]Cl2 (Cp* = pentamethylcyclopentadienyl; TH2BPM = 4,4',6,6'-tetrahydroxy-2,2'-bipyrimidine) enormously promotes the catalytic hydrogenation of CO2 in basic water by these synergistic effects under atmospheric pressure and at room temperature. Additionally, newly designed complexes with azole-type ligands were applied to CO2 hydrogenation. The catalytic efficiencies of the azole-type complexes were much higher than that of the unsubstituted bipyridine complex [Cp*Ir(bpy)(OH2)]SO4. Furthermore, the introduction of one or more hydroxy groups into ligands such as 2-pyrazolyl-6-hydroxypyridine, 2-pyrazolyl-4,6-dihydroxypyrimidine, and 4-pyrazolyl-2,6-dihydroxypyrimidine enhanced the catalytic activity. It is clear that the incorporation of additional electron-donating functionalities into proton-responsive azole-type ligands is effective for promoting further enhanced hydrogenation of CO2.

8.
Inorg Chem ; 54(9): 4310-21, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25902004

RESUMO

The ability of cobalt-based transition metal complexes to catalyze electrochemical proton reduction to produce molecular hydrogen has resulted in a large number of mechanistic studies involving various cobalt complexes. While the basic mechanism of proton reduction promoted by cobalt species is well-understood, the reactivity of certain reaction intermediates, such as Co(I) and Co(III)-H, is still relatively unknown owing to their transient nature, especially in aqueous media. In this work we investigate the properties of intermediates produced during catalytic proton reduction in aqueous solutions promoted by the [(DPA-Bpy)Co(OH2)](n+) (DPA-Bpy = N,N-bis(2-pyridinylmethyl)-2,20-bipyridine-6-methanamine) complex ([Co(L)(OH2)](n+) where L is the pentadentate DPA-Bpy ligand or [Co(OH2)](n+) as a shorthand). Experimental results based on transient pulse radiolysis and laser flash photolysis methods, together with electrochemical studies and supported by density functional theory (DFT) calculations indicate that, while the water ligand is strongly coordinated to the metal center in the oxidation state 3+, one-electron reduction of the complex to form a Co(II) species results in weakening the Co-O bond. The further reduction to a Co(I) species leads to the loss of the aqua ligand and the formation of [Co(I)-VS)](+) (VS = vacant site). Interestingly, DFT calculations also predict the existence of a [Co(I)(κ(4)-L)(OH2)](+) species at least transiently, and its formation is consistent with the experimental Pourbaix diagram. Both electrochemical and kinetics results indicate that the Co(I) species must undergo some structural change prior to accepting the proton, and this transformation represents the rate-determining step (RDS) in the overall formation of [Co(III)-H](2+). We propose that this RDS may originate from the slow removal of a solvent ligand in the intermediate [Co(I)(κ(4)-L)(OH2)](+) in addition to the significant structural reorganization of the metal complex and surrounding solvent resulting in a high free energy of activation.

9.
Proc Natl Acad Sci U S A ; 109(39): 15657-62, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22826261

RESUMO

We have developed a correlation between experimental and density functional theory-derived results of the hydride-donating power, or "hydricity", of various ruthenium, rhenium, and organic hydride donors. This approach utilizes the correlation between experimental hydricity values and their corresponding calculated free-energy differences between the hydride donors and their conjugate acceptors in acetonitrile, and leads to an extrapolated value of the absolute free energy of the hydride ion without the necessity to calculate it directly. We then use this correlation to predict, from density functional theory-calculated data, hydricity values of ruthenium and rhenium complexes that incorporate the pbnHH ligand-pbnHH = 1,5-dihydro-2-(2-pyridyl)-benzo[b]-1,5-naphthyridine-to model the function of NADPH. These visible light-generated, photocatalytic complexes produced by disproportionation of a protonated-photoreduced dimer of a metal-pbn complex may be valuable for use in reducing CO(2) to fuels such as methanol. The excited-state lifetime of photoexcited [Ru(bpy)(2)(pbnHH)](2+) is found to be about 70 ns, and this excited state can be reductively quenched by triethylamine or 1,4-diazabicyclo[2.2.2]octane to produce the one-electron-reduced [Ru(bpy)(2)(pbnHH)](+) species with half-life exceeding 50 µs, thus opening the door to new opportunities for hydride-transfer reactions leading to CO(2) reduction by producing a species with much increased hydricity.


Assuntos
Materiais Biomiméticos/química , Dióxido de Carbono/química , Metanol/síntese química , Modelos Químicos , NADP/química , Processos Fotoquímicos , Metanol/química , NADP/análogos & derivados , Oxirredução , Rutênio/química
10.
Angew Chem Int Ed Engl ; 54(47): 14128-32, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26427767

RESUMO

We prepared two geometric isomers of [Ir(tpy)(ppy)H](+), previously proposed as a key intermediate in the photochemical reduction of CO2 to CO, and characterized their notably different ground- and excited-state interactions with CO2 and their hydricities using experimental and computational methods. Only one isomer, C-trans-[Ir(tpy)(ppy)H](+), reacts with CO2 to generate the formato complex in the ground state, consistent with its calculated hydricity. Under photocatalytic conditions in CH3CN/TEOA, a common reactive C-trans-[Ir(tpy)(ppy)](0) species, irrespective of the starting isomer or monodentate ligand (such as hydride or Cl), reacts with CO2 and produces CO with the same catalytic efficiency.

11.
Biochim Biophys Acta ; 1827(8-9): 1031-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23174332

RESUMO

Recent investigations of the interconversion of CO2 and formic acid using Ru, Ir and Fe complexes are summarized in this review. During the past several years, both the reaction rates and catalyst stabilities have been significantly improved. Remarkably, the interconversion (i.e., reversibility) has also been achieved under mild conditions in environmentally benign water solvent by slightly changing the pH of the aqueous solution. Only a few catalysts seem to reflect a bio-inspired design such as the use of proton responsive ligands, ligands with pendent bases or acids for a second-coordination-sphere interaction, electroresponsive ligands, and/or ligands having a hydrogen bonding function with a solvent molecule or an added reagent. The most successful of these is an iridium dinuclear complex catalyst that at least has the first three of these characteristics associated with its bridging ligand. By utilizing an acid/base equilibrium for proton removal, the ligand becomes a strong electron donor, resulting in Ir(I) character with a vacant coordination site at each metal center in slightly basic solution. Complemented by DFT calculations, kinetic studies of the rates of formate production using a related family of Ir complexes with and without such functions on the ligand reveal that the rate-determining step for the CO2 hydrogenation is likely to be H2 addition through heterolytic cleavage involving a "proton relay" through the pendent base. The dehydrogenation of formic acid, owing to the proton responsive ligands changing character under slightly acidic pH conditions, is likely to occur by a mechanism with a different rate-determining step. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.


Assuntos
Dióxido de Carbono/química , Formiatos/química , Irídio/química , Hidrogênio/química
12.
Biochim Biophys Acta ; 1827(8-9): 882-91, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23567870

RESUMO

We present a simple approach for the calculation of accurate pKa values in water and acetonitrile based on the straightforward calculation of the gas-phase absolute free energies of the acid and conjugate base with use of only a continuum solvation model to obtain the corresponding solution-phase free energies. Most of the error in such an approach arises from inaccurate differential solvation free energies of the acid and conjugate base which is removed in our approach using a correction based on the realization that the gas-phase acidities have only a small systematic error relative to the dominant systematic error in the differential solvation. The methodology is outlined in the context of the calculation of a set of neutral acids with water as the solvent for a reasonably accurate electronic structure level of theory (DFT), basis set, and implicit solvation model. It is then applied to the comparison of results for three different hybrid density functionals to illustrate the insensitivity to the functional. Finally, the approach is applied to the comparison of results for sets of neutral acids and protonated amine cationic acids in both aqueous (water) and nonaqueous (acetonitrile) solvents. The methodology is shown to generally predict the pKa values for all the cases investigated to within 1 pH unit so long as the differential solvation error is larger than the systematic error in the gas-phase acidity calculations. Such an approach is rather general and does not have additional complications that would arise in a cluster-continuum method, thus giving it strength as a simple high-throughput means to calculate absolute pKa values. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.


Assuntos
Acetonitrilas/química , Água/química , Ácidos/química , Aminas/química , Cátions , Modelos Teóricos , Termodinâmica
13.
Phys Rev Lett ; 113(17): 176802, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25379929

RESUMO

A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b1 energy level in water. The application to the specific cases of nonpolar (101¯0) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. These effects contribute up to 0.5 eV.

14.
Chemphyschem ; 15(14): 2951-8, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25113847

RESUMO

The reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we analyze the low-energy electronic absorption bands of two cobaloxime systems experimentally and use a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.


Assuntos
Modelos Teóricos , Compostos Organometálicos/química , Espectrofotometria Ultravioleta/métodos
15.
Inorg Chem ; 53(13): 6904-13, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24911180

RESUMO

The mononuclear ruthenium(II) complex [Ru](2+) (Ru = Ru(dpp)(pic)2, where dpp is the tetradentate 2,9-dipyrid-2'-yl-1,10-phenanthroline ligand and pic is 4-picoline) reported by Thummel's group (Inorg. Chem. 2008, 47, 1835-1848) that contains no water molecule in its primary coordination shell is evaluated as a catalyst for water oxidation in artificial photosynthesis. A detailed theoretical characterization of the energetics, thermochemistry, and spectroscopic properties of intermediates allowed us to interpret new electrochemical and spectroscopic experimental data, and propose a mechanism for the water oxidation process that involves an unprecedented sequence of seven-coordinate ruthenium complexes as intermediates. This analysis provides insights into a mechanism that generates four electrons and four protons in the solution and a gas-phase oxygen molecule at different pH values. On the basis of the calculations and corroborated substantially by experiments, the catalytic cycle goes through [(2)Ru(III)](3+) and [(2)Ru(V)(O)](3+) to [(1)Ru(IV)(OOH)](3+) then [(2)Ru(III)(···(3)O2)](3+) at pH 0, and through [(3)Ru(IV)(O)](2+), [(2)Ru(V)(O)](3+), and [(1)Ru(IV)(OO)](2+) at pH 9 before reaching the same [(2)Ru(III)(···(3)O2)](3+) species, from which the liberation of the weakly bound O2 might require an additional oxidation to form [(3)Ru(IV)(O)](2+) to initiate further cycles involving all seven-coordinate species.

16.
Phys Chem Chem Phys ; 16(24): 12057-66, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24686328

RESUMO

The GaN/ZnO alloy functions as a visible-light photocatalyst for splitting water into hydrogen and oxygen. As a first step toward understanding the mechanism and energetics of water-splitting reactions, we investigate the microscopic structure of the aqueous interfaces of the GaN/ZnO alloy and compare them with the aqueous interfaces of pure GaN and ZnO. Specifically, we have studied the (101̄0) surface of GaN and ZnO and the (101̄0) and (12̄10) surfaces of the 1 : 1 GaN/ZnO alloy. The calculations are carried out using first-principles density functional theory based molecular dynamics (DFT-MD). The structure of water within a 3 Šdistance from the semiconductor surface is significantly altered by the acid/base chemistry of the aqueous interface. Water adsorption on all surfaces is substantially dissociative such that the surface anions (N or O) act as bases accepting protons from dissociated water molecules while the corresponding hydroxide ions bond with surface cations (Ga or Zn). Additionally, the hard-wall interface presented by the semiconductor imparts ripples in the density of water. Beyond a 3 Šdistance from the semiconductor surface, water exhibits a bulk-like hydrogen bond network and oxygen-oxygen radial distribution function. Taken together, these characteristics represent the resting (or "dark") state of the catalytic interface. The electronic structure analysis of the aqueous GaN/ZnO interface suggests that the photogenerated holes may get trapped on interface species other than the adsorbed OH(-) ions. This suggests additional dynamical steps in the water oxidation process.

17.
J Am Chem Soc ; 135(23): 8682-91, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23679683

RESUMO

Photochemical water splitting is a promising avenue to sustainable, clean energy and fuel production. Gallium nitride (GaN) and its solid solutions are excellent photocatalytic materials; however, the efficiency of the process is low on pure GaN, and cocatalysts are required to increase the yields. We present the first time-domain theoretical study of the initial steps of photocatalytic water splitting on a GaN surface. Our state-of-the-art simulation technique, combining nonadiabatic molecular dynamics and time-dependent density functional theory, allows us to characterize the mechanisms and time scales of the evolution of the photogenerated positive charge (hole) and the subsequent proton transfer at the GaN/water interface. The calculations show that the hole loses its excess energy within 100 fs and localizes primarily on the nitrogen atoms of the GaN surface, initiating a sequence of proton-transfer events from the surface N-H group to the nearby OH groups and bulk water molecules. Water splitting requires hole localization on oxygen rather than nitrogen, necessitating nonadiabatic transitions uphill in energy on pure GaN. Such transitions happen rarely, resulting in low yields of the photocatalytic water splitting observed experimentally. We conclude that efficient cocatalysts should favor localization of the photogenerated hole on oxygen-containing species at the semiconductor/water interface.


Assuntos
Gálio/química , Simulação de Dinâmica Molecular , Água/química , Catálise , Processos Fotoquímicos , Propriedades de Superfície
18.
Inorg Chem ; 52(15): 8845-50, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23837911

RESUMO

The catalytic water oxidation mechanism proposed for many single-site ruthenium complexes proceeds via the nucleophilic attack of a water molecule on the Ru(V)═O species. In contrast, Ru(II) complexes containing 4-t-butyl-2,6-di-1',8'-(naphthyrid-2'-yl)-pyridine (and its bisbenzo-derivative), an equatorial water, and two axial 4-picolines follow the thermodynamically more favorable "direct pathway" via [Ru(IV)═O](2+), which avoids the higher oxidation state [Ru(V)═O](3+) in neutral and basic media. Our experimental and theoretical results that focus on the pH-dependent onset catalytic potentials indicative of a PCET driven low-energy pathway for the formation of products with an O-O bond (such as [Ru(III)-OOH](2+) and [Ru(IV)-OO](2+)) at an applied potential below the Ru(V)═O/Ru(IV)═O couple clearly support such a mechanism. However, in the cases of [Ru(tpy)(bpy)(OH2)](2+) and [Ru(tpy)(bpm)(OH2)](2+), the formation of the Ru(V)═O species appears to be required before O-O bond formation. The complexes under discussion provide a unique functional model for water oxidation that proceeds by four consecutive PCET steps in neutral and alkaline media.

19.
Inorg Chem ; 52(8): 4160-72, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23541116

RESUMO

The kinetics and thermodynamics of the binding of several small molecules, L (L = N2, H2, D2, and C2H4), to the coordinatively unsaturated pincer-PCP rhodium(I) complexes Rh[(t)Bu2PCH2(C6H3)CH2P(t)Bu2] (1) and Rh[(t)Bu2P(CH2)2(CH)(CH2)2P(t)Bu2] (2) in organic solvents (n-heptane, toluene, THF, and cyclohexane-d12) have been investigated by a combination of kinetic flash photolysis methods, NMR equilibrium studies, and density functional theory (DFT) calculations. Using various gas mixtures and monitoring by NMR until equilibrium was established, the relative free energies of binding of N2, H2, and C2H4 in cyclohexane-d12 were found to increase in the order C2H4 < N2 < H2. Time-resolved infrared (TRIR) and UV-vis transient absorption spectroscopy revealed that 355 nm excitation of 1-L and 2-L results in the photoejection of ligand L. The subsequent mechanism of binding of L to 1 and 2 to regenerate 1-L and 2-L is determined by the structure of the PCP ligand framework and the nature of the solvent. In both cases, the primary transient is a long-lived, unsolvated species (τ = 50-800 ns, depending on L and its concentration in solution). For 2, this so-called less-reactive form (LRF) is in equilibrium with a more-reactive form (MRF), which reacts with L at diffusion-controlled rates to regenerate 2-L. These two intermediates are proposed to be different conformers of the three-coordinate (PCP)Rh fragment. For 1, a similar mechanism is proposed to occur, but the LRF to MRF step is irreversible. In addition, a parallel reaction pathway was observed that involves the direct reaction of the LRF of 1 with L, with second-order rate constants that vary by almost 3 orders of magnitude, depending on the nature of L (in n-heptane, k = 6.7 × 10(5) M(-1) s(-1) for L = C2H4; 4.0 × 10(6) M(-1) s(-1) for L = N2; 5.5 × 10(8) M(-1) s(-1) for L = H2). Experiments in the more coordinating solvent, THF, revealed the binding of THF to 1 to generate 1-THF, and its subsequent reaction with L, as a competing pathway.

20.
Inorg Chem ; 52(21): 12576-86, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24131038

RESUMO

New water-soluble pentamethylcyclopentadienyl cobalt(III) complexes with proton-responsive 4,4'- and 6,6'-dihydroxy-2,2'-bipyridine (4DHBP and 6DHBP, respectively) ligands have been prepared and were characterized by X-ray crystallography, UV-vis and NMR spectroscopy, and mass spectrometry. These cobalt(III) complexes with proton-responsive ligands predominantly exist in their deprotonated [Cp*Co(DHBP-2H(+))(OH2)] forms with stronger electron-donating properties in neutral and basic solutions, and are active catalysts for CO2 hydrogenation in aqueous bicarbonate media at moderate temperature under a total 4-5 MPa (CO2:H2 1:1) pressure. The cobalt complexes containing 4DHBP ligands ([1-OH2](2+) and [1-Cl](+), where 1 = Cp*Co(4DHBP)) display better thermal stability and exhibit notable catalytic activity for CO2 hydrogenation to formate in contrast to the catalytically inactive nonsubstituted bpy analogues [3-OH2](2+) (3 = Cp*Co(bpy)). While the catalyst Cp*Ir(6DHBP)(OH2)(2+) in which the pendent oxyanion lowers the barrier for H2 heterolysis via proton transfer through a hydrogen-bonding network involving a water molecule is remarkably effective (ACS Catal. 2013, 3, 856-860), cobalt complexes containing 6DHBP ligands ([2-OH2](2+) and [2-Cl](+), 2 = Cp*Co(6DHBP)) exhibit lower TOF and TON for CO2 hydrogenation than those with 4DHBP. The low activity is attributed to thermal instability during the hydrogenation of CO2 as corroborated by DFT calculations.


Assuntos
Dióxido de Carbono/química , Cobalto/química , Compostos Organometálicos/química , Catálise , Técnicas de Química Sintética , Cristalografia por Raios X , Formiatos , Hidrogenação , Ligantes , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Compostos Organometálicos/síntese química , Prótons , Soluções , Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa