Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Toxicol Pathol ; 52(1): 13-20, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38445634

RESUMO

The Tumor Combination Guide was created at the request of the U. S. Food and Drug Administration (FDA) by a Working Group of biopharmaceutical experts from international societies of toxicologic pathology, the Food and Drug Administration (FDA), and members of the Standard for Exchange of Nonclinical Data (SEND) initiative, to assist pharmacology/toxicology reviewers and biostatisticians in statistical analysis of nonclinical tumor data. The guide will also be useful to study and peer review pathologists in interpreting the tumor data. This guide provides a higher-level hierarchy of tumor types or categories correlating the tumor names from the International Harmonization of Nomenclature and Diagnostic Criteria (INHAND) publications with those available in the NEOPLASM controlled terminology (CT) code list in SEND. The version of CT used in a study should be referenced in the nonclinical study data reviewer's guide (SDRG) (section 3.1) of electronic submissions to the FDA. The tumor combination guide instructions and examples are in a tabular format to make informed decisions for combining tumor data for statistical analysis. The strategy for combining tumor types for statistical analysis is based on scientific criteria gleaned from the current scientific literature; as SEND and INHAND terminology and information evolve, this guide will be updated.


Assuntos
Testes de Carcinogenicidade , Animais , Testes de Carcinogenicidade/métodos , Testes de Carcinogenicidade/normas , Neoplasias/induzido quimicamente , Neoplasias/patologia , Estados Unidos , Ratos , United States Food and Drug Administration , Roedores , Camundongos , Guias como Assunto , Interpretação Estatística de Dados
2.
JMIR Med Inform ; 10(1): e30363, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35084343

RESUMO

BACKGROUND: Real-world data (RWD) and real-world evidence (RWE) are playing increasingly important roles in clinical research and health care decision-making. To leverage RWD and generate reliable RWE, data should be well defined and structured in a way that is semantically interoperable and consistent across stakeholders. The adoption of data standards is one of the cornerstones supporting high-quality evidence for the development of clinical medicine and therapeutics. Clinical Data Interchange Standards Consortium (CDISC) data standards are mature, globally recognized, and heavily used by the pharmaceutical industry for regulatory submissions. The CDISC RWD Connect Initiative aims to better understand the barriers to implementing CDISC standards for RWD and to identify the tools and guidance needed to more easily implement them. OBJECTIVE: The aim of this study is to understand the barriers to implementing CDISC standards for RWD and to identify the tools and guidance that may be needed to implement CDISC standards more easily for this purpose. METHODS: We conducted a qualitative Delphi survey involving an expert advisory board with multiple key stakeholders, with 3 rounds of input and review. RESULTS: Overall, 66 experts participated in round 1, 56 in round 2, and 49 in round 3 of the Delphi survey. Their inputs were collected and analyzed, culminating in group statements. It was widely agreed that the standardization of RWD is highly necessary, and the primary focus should be on its ability to improve data sharing and the quality of RWE. The priorities for RWD standardization included electronic health records, such as data shared using Health Level 7 Fast Health care Interoperability Resources (FHIR), and the data stemming from observational studies. With different standardization efforts already underway in these areas, a gap analysis should be performed to identify the areas where synergies and efficiencies are possible and then collaborate with stakeholders to create or extend existing mappings between CDISC and other standards, controlled terminologies, and models to represent data originating across different sources. CONCLUSIONS: There are many ongoing data standardization efforts around human health data-related activities, each with different definitions, levels of granularity, and purpose. Among these, CDISC has been successful in standardizing clinical trial-based data for regulation worldwide. However, the complexity of the CDISC standards and the fact that they were developed for different purposes, combined with the lack of awareness and incentives to use a new standard and insufficient training and implementation support, are significant barriers to setting up the use of CDISC standards for RWD. The collection and dissemination of use cases, development of tools and support systems for the RWD community, and collaboration with other standards development organizations are potential steps forward. Using CDISC will help link clinical trial data and RWD and promote innovation in health data science.

3.
Genes Cancer ; 4(11-12): 535-45, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24386513

RESUMO

NKX3.1 is a tumor suppressor down-regulated in early prostate cancers. A SNP (rs2228013), which represents a polymorphic NKX3.1(C154T) coding for a variant protein NKX3.1(R52C), is present in 10% of the population and is related to prostatic enlargement and prostate cancer. We investigated rs2228013 in prostate cancer risk for 937 prostate cancer cases and 1,086 age-matched controls from a nested case-control study within the prospective Physicians' Health Study (PHS) and among 798 cases and 527 controls retrospectively collected in the Risk Factors for Prostate Cancer Study of the Victoria Cancer Council (RFPCS). We also investigated the interaction between serum IGF-I levels and NKX3.1 genotype in the populations from PHS and RFPCS. In the PHS, we found no overall association between the variant T allele in rs2228013 in NKX3.1 and prostate cancer risk (odd ratio = 1.25; 95% confidence interval = 0.92-1.71). A subgroup analysis for cases diagnosed before age 70 showed an increased risk (relative risk = 1.55; 95% confidence interval = 1.04-2.31) of overall prostate cancer. In this age-group, the risk of metastatic cancer at diagnosis or of fatal cancer was even higher in carriers of the T allele (relative risk = 2.15; 95% confidence interval = 1.00-4.63). These associations were not replicated in the RFPCS. Serum IGF-I levels were found to be a risk factor for prostate cancer in both study populations. The wild type NKX3.1 protein can induce IGFBP-3 expression in vitro. We report that variant NKX3.1 cannot induce IGFBP-3 expression, but the NKX3.1 genotype does not modify the association between serum IGF-I levels and prostate cancer risk.

4.
Cancer Res ; 69(6): 2615-22, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19258508

RESUMO

NKX3.1 is a homeobox gene that codes for a haploinsufficient prostate cancer tumor suppressor. NKX3.1 protein levels are down-regulated in the majority of primary prostate cancer tissues. NKX3.1 expression in PC-3 cells increased insulin-like growth factor binding protein-3 (IGFBP-3) mRNA expression 10-fold as determined by expression microarray analysis. In both stably and transiently transfected PC-3 cells and in LNCaP cells, NKX3.1 expression increased IGFBP-3 mRNA and protein expression. In prostates of Nkx3.1 gene-targeted mice Igfbp-3 mRNA levels correlated with Nkx3.1 copy number. NKX3.1 expression in PC-3 cells attenuated the ability of insulin-like growth factor-I (IGF-I) to induce phosphorylation of type I IGF receptor (IGF-IR), insulin receptor substrate 1, phosphatidylinositol 3-kinase, and AKT. The effect of NKX3.1 on IGF-I signaling was not seen when cells were exposed to long-R3-IGF-I, an IGF-I variant peptide that does not bind to IGFBP-3. Additionally, small interfering RNA-induced knockdown of IGFBP-3 expression partially reversed the attenuation of IGF-IR signaling by NKX3.1 and abrogated NKX3.1 suppression of PC-3 cell proliferation. Thus, there is a close relationship in vitro and in vivo between NKX3.1 and IGFBP-3. The growth-suppressive effects of NKX3.1 in prostate cells are mediated, in part, by activation of IGFBP-3 expression.


Assuntos
Proteínas de Homeodomínio/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fatores de Transcrição/metabolismo , Animais , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/biossíntese , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Masculino , Camundongos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transdução de Sinais , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transfecção , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa