Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 326(6): F1032-F1038, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634136

RESUMO

The gut microbiome regulates many important host physiological processes associated with cardiovascular health and disease; however, the impact of the gut microbiome on aldosterone is unclear. Investigating whether gut microbiota regulate aldosterone can offer novel insights into how the microbiome affects blood pressure. In this study, we aimed to determine whether gut microbiota regulate host aldosterone. We used enzyme-linked immunosorbent assays (ELISAs) to assess plasma aldosterone and plasma renin activity (PRA) in female and male mice in which gut microbiota are intact, suppressed, or absent. In addition, we examined urinary aldosterone. Our findings demonstrated that when the gut microbiota is suppressed following antibiotic treatment, there is an increase in plasma and urinary aldosterone in both female and male mice. In contrast, an increase in PRA is seen only in males. We also found that when gut microbiota are absent (germ-free mice), plasma aldosterone is significantly increased compared with conventional animals (in both females and males), but PRA is not. Understanding how gut microbiota influence aldosterone levels could provide valuable insights into the development and treatment of hypertension and/or primary aldosteronism. This knowledge may open new avenues for therapeutic interventions, such as probiotics or dietary modifications to help regulate blood pressure via microbiota-based changes to aldosterone.NEW & NOTEWORTHY We explore the role of the gut microbiome in regulating aldosterone, a hormone closely linked to blood pressure and cardiovascular disease. Despite the recognized importance of the gut microbiome in host physiology, the relationship with circulating aldosterone remains largely unexplored. We demonstrate that suppression of gut microbiota leads to increased levels of plasma and urinary aldosterone. These findings underscore the potential of the gut microbiota to influence aldosterone regulation, suggesting new possibilities for treating hypertension.


Assuntos
Aldosterona , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Renina , Animais , Aldosterona/sangue , Aldosterona/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Feminino , Masculino , Renina/sangue , Renina/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Vida Livre de Germes , Camundongos , Antibacterianos/farmacologia , Hipertensão/microbiologia , Hipertensão/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753483

RESUMO

Genome-wide association studies have identified ICOSLG, which encodes the inducible costimulator ligand (ICOSLG or ICOSL) as a susceptibility locus for inflammatory bowel disease. ICOSL has been implicated in the enhancement of pattern recognition receptor signaling in dendritic cells, induction of IL-10 production by CD4 T cells, and the generation of high-affinity antibodies to specific antigens-all of which can potentially explain its involvement in gastrointestinal inflammation. Here, we show that murine ICOSL deficiency results in significant enrichment of IL-10-producing CD4 T cells particularly in the proximal large intestine. Transient depletion of IL-10-producing cells from adult ICOSL-deficient mice induced severe colonic inflammation that was prevented when mice were first treated with metronidazole. ICOSL-deficient mice displayed reduced IgA and IgG antibodies in the colon mucus and impaired serum antibody recognition of microbial antigens, including flagellins derived from mucus-associated bacteria of the Lachnospiraceae family. Confirming the synergy between ICOSL and IL-10, ICOSL deficiency coupled with CD4-specific deletion of the Il10 gene resulted in juvenile onset colitis that was impeded when pups were fostered by ICOSL-sufficient dams. In this setting, we found that both maternally acquired and host-derived antibodies contribute to the life anti-commensal antibody repertoire that mediates this protection in early life. Collectively, our findings reveal a partnership between ICOSL-dependent anti-commensal antibodies and IL-10 in adaptive immune regulation of the microbiota in the large intestine. Furthermore, we identify ICOSL deficiency as an effective platform for exploring the functions of anti-commensal antibodies in host-microbiota mutualism.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Microbioma Gastrointestinal/imunologia , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Interleucina-10/metabolismo , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Linfócitos T CD4-Positivos/metabolismo , Colo/imunologia , Colo/microbiologia , Colo/patologia , Modelos Animais de Doenças , Feminino , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Interleucina-10/genética , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/imunologia , Simbiose/imunologia
3.
Inflamm Bowel Dis ; 29(6): 960-972, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661889

RESUMO

BACKGROUND: Early life stress (ELS) is an environmental trigger believed to promote increased risk of IBD. Our goal was to identify mechanisms whereby ELS in mice affects susceptibility to and/or severity of gut inflammation. METHODS: We utilized 2 published animal models of ELS. In the first model, newborn mice were separated from the dam daily for 4 to 8 hours starting on postnatal day 2 and then weaned early on postnatal day 17. Control mice were left undisturbed with the dams until weaning on postnatal day 21. In the second model, dams were fed dexamethasone or vehicle ad libitum in drinking water on postpartum days 1 to 14. Plasma and colonic corticosterone were measured in juvenile and adult mice. Colitis was induced in 4-week-old mice via intraperitoneal injection of interleukin (IL)-10 receptor blocking antibody every 5 days for 15 days. Five or 15 days later, colitis scores and transcripts for Tnf, glucocorticoid receptors, and steroidogenic enzymes were measured. RESULTS: Mice exposed to ELS displayed reduced plasma and colonic corticosterone. Control animals showed improvements in indices of inflammation following cessation of interleukin-10 receptor blockade, whereas ELS-exposed animals maintained high levels of Tnf and histological signs of colitis. In colitic animals, prior exposure to ELS was associated with significantly lower expression of genes associated with corticosterone synthesis and responsiveness. Finally, TNF stimulation of colonic crypt cells from ELS mice led to increased inhibition of corticosterone synthesis. CONCLUSIONS: Our study identifies impaired local glucocorticoid production and responsiveness as a potential mechanism whereby ELS predisposes to chronic colitis in susceptible hosts.


Using 2 distinct animal models, this study shows that in mice, early life stress leads to reduced colonic corticosterone and that induction of colitis after stress removal results in reduced transcription of glucocorticoid synthesis genes, increased Tnf, and enhanced chronicity of intestinal inflammation.


Assuntos
Colite , Estresse Psicológico , Animais , Feminino , Camundongos , Colite/metabolismo , Corticosterona/farmacologia , Modelos Animais de Doenças , Glucocorticoides , Inflamação/etiologia , Estresse Psicológico/complicações
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa