Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Chem Inf Model ; 62(24): 6508-6518, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-35994014

RESUMO

Mycobacterium tuberculosis protein kinase B (PknB) is essential to mycobacterial growth and has received considerable attention as an attractive target for novel anti-tuberculosis drug development. Here, virtual screening, validated by biological assays, was applied to select candidate inhibitors of M. tuberculosis PknB from the Specs compound library (www.specs.net). Fifteen compounds were identified as hits and selected for in vitro biological assays, of which three indoles (2, AE-848/42799159; 4, AH-262/34335013; 10, AP-124/40904362) inhibited growth of M. tuberculosis H37Rv with minimal inhibitory concentrations of 6.2, 12.5, and 6.2 µg/mL, respectively. Two compounds, 2 and 10, inhibited M. tuberculosis PknB activity in vitro, with IC50 values of 14.4 and 12.1 µM, respectively, suggesting this to be the likely basis of their anti-tubercular activity. In contrast, compound 4 displayed anti-tuberculosis activity against M. tuberculosis H37Rv but showed no inhibition of PknB activity (IC50 > 128 µM). We hypothesize that hydrolysis of its ethyl ester to a carboxylate moiety generates an active species that inhibits other M. tuberculosis enzymes. Molecular dynamics simulations of modeled complexes of compounds 2, 4, and 10 bound to M. tuberculosis PknB indicated that compound 4 has a lower affinity for M. tuberculosis PknB than compounds 2 and 10, as evidenced by higher calculated binding free energies, consistent with experiment. Compounds 2 and 10 therefore represent candidate inhibitors of M. tuberculosis PknB that provide attractive starting templates for optimization as anti-tubercular agents.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antituberculosos/farmacologia , Antituberculosos/química , Tuberculose/tratamento farmacológico , Fosforilação
2.
Mol Microbiol ; 112(6): 1847-1862, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31562654

RESUMO

Mycobacterium tuberculosis (Mtb) is able to persist in the body through months of multi-drug therapy. Mycobacteria possess a wide range of regulatory proteins, including the protein kinase B (PknB) which controls peptidoglycan biosynthesis during growth. Here, we observed that depletion of PknB resulted in specific transcriptional changes that are likely caused by reduced phosphorylation of the H-NS-like regulator Lsr2 at threonine 112. The activity of PknB towards this phosphosite was confirmed with purified proteins, and this site was required for adaptation of Mtb to hypoxic conditions, and growth on solid media. Like H-NS, Lsr2 binds DNA in sequence-dependent and non-specific modes. PknB phosphorylation of Lsr2 reduced DNA binding, measured by fluorescence anisotropy and electrophoretic mobility shift assays, and our NMR structure of phosphomimetic T112D Lsr2 suggests that this may be due to increased dynamics of the DNA-binding domain. Conversely, the phosphoablative T112A Lsr2 had increased binding to certain DNA sites in ChIP-sequencing, and Mtb containing this variant showed transcriptional changes that correspond with the change in DNA binding. In summary, PknB controls Mtb growth and adaptations to the changing host environment by phosphorylating the global transcriptional regulator Lsr2.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mycobacterium tuberculosis/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Bactérias/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Proteínas de Ligação a DNA/fisiologia , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Regulação Bacteriana da Expressão Gênica/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/fisiologia , Treonina/metabolismo , Fatores de Transcrição/metabolismo
3.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32778551

RESUMO

Tuberculosis continues to kill millions of people each year. The main difficulty in eradication of the disease is the prolonged duration of treatment, which takes at least 6 months. Persister cells have long been associated with failed treatment and disease relapse because of their phenotypical, though transient, tolerance to drugs. By targeting these persisters, the duration of treatment could be shortened, leading to improved tuberculosis treatment and a reduction in transmission. The unique in vivo environment drives the generation of persisters; however, appropriate in vivo mycobacterial persister models enabling optimized drug screening are lacking. To set up a persister infection model that is suitable for this, we infected zebrafish embryos with in vitro-starved Mycobacterium marinumIn vitro starvation resulted in a persister-like phenotype with the accumulation of stored neutral lipids and concomitant increased tolerance to ethambutol. However, these starved wild-type M. marinum organisms rapidly lost their persister phenotype in vivo To prolong the persister phenotype in vivo, we subsequently generated and analyzed mutants lacking functional resuscitation-promoting factors (Rpfs). Interestingly, the ΔrpfAB mutant, lacking two Rpfs, established an infection in vivo, whereas a nutrient-starved ΔrpfAB mutant did maintain its persister phenotype in vivo This mutant was, after nutrient starvation, also tolerant to ethambutol treatment in vivo, as would be expected for persisters. We propose that this zebrafish embryo model with ΔrpfAB mutant bacteria is a valuable addition for drug screening purposes and specifically screens to target mycobacterial persisters.


Assuntos
Mycobacterium , Preparações Farmacêuticas , Tuberculose , Animais , Etambutol , Tuberculose/tratamento farmacológico , Peixe-Zebra
4.
Anal Chem ; 91(15): 9516-9521, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31259536

RESUMO

The growing significance of membrane proteins inspires continuous development and improvement of methods for robust membrane proteomics. Here, we developed a very simple and efficient method for membrane protein digestion using an ionic detergent, sodium dodecyl sulfate (SDS), at high temperature, conditions where trypsin is normally inactivated. Our results suggest that trypsin can be stabilized by a combination of calcium ions and sodium chloride, which enables protein digestion at elevated temperature in the presence of strong ionic detergents such as SDS. Finding the conditions for stabilization of trypsin offers novel opportunities for the application of detergents for the investigation of membrane proteins.


Assuntos
Cálcio/química , Membrana Celular/química , Listeria monocytogenes/química , Ovalbumina/química , Dodecilsulfato de Sódio/química , Eletroforese em Gel de Poliacrilamida , Temperatura Alta , Espectrometria de Massas , Reprodutibilidade dos Testes
5.
Nucleic Acids Res ; 45(11): 6600-6612, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28482027

RESUMO

Mycobacterium tuberculosis (MTb) is the causative agent of pulmonary tuberculosis (TB). MTb colonizes the human lung, often entering a non-replicating state before progressing to life-threatening active infections. Transcriptional reprogramming is essential for TB pathogenesis. In vitro, Cmr (a member of the CRP/FNR super-family of transcription regulators) bound at a single DNA site to act as a dual regulator of cmr transcription and an activator of the divergent rv1676 gene. Transcriptional profiling and DNA-binding assays suggested that Cmr directly represses dosR expression. The DosR regulon is thought to be involved in establishing latent tuberculosis infections in response to hypoxia and nitric oxide. Accordingly, DNA-binding by Cmr was severely impaired by nitrosation. A cmr mutant was better able to survive a nitrosative stress challenge but was attenuated in a mouse aerosol infection model. The complemented mutant exhibited a ∼2-fold increase in cmr expression, which led to increased sensitivity to nitrosative stress. This, and the inability to restore wild-type behaviour in the infection model, suggests that precise regulation of the cmr locus, which is associated with Region of Difference 150 in hypervirulent Beijing strains of Mtb, is important for TB pathogenesis.


Assuntos
Proteínas de Bactérias/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Quinases/genética , Fatores de Transcrição/fisiologia , Tuberculose/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA , Escherichia coli , Feminino , Regulação Bacteriana da Expressão Gênica , Macrófagos/microbiologia , Camundongos Endogâmicos BALB C , Mycobacterium smegmatis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Oxirredução , Ligação Proteica , Proteínas Quinases/metabolismo , Transcrição Gênica , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
BMC Infect Dis ; 18(1): 94, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29486715

RESUMO

BACKGROUND: Tuberculosis (TB) recurrence represents a challenge to control programs. In low incidence countries, the prevailing risk factors leading to recurrence are poorly characterised. METHODS: We conducted a nested case-control study using the Leicester TB service TBIT database. Cases were identified from database notifications between 1994 and 2014. Controls had one episode and were matched to cases on a ratio of two to one by the date of notification. Multiple imputation was used to account for missing data. Multivariate conditional logistic regression analysis was employed to identify clinical, sociodemographic and TB specific risk factors for recurrence. RESULTS: From a cohort of 4628 patients, 82 TB recurrences occurred (1.8%). Nineteen of 82 patients had paired isolates with MIRU-VNTR strain type profiles available, of which 84% were relapses and 16% reinfections. On multivariate analysis, smoking (OR 3.8; p = 0.04), grade 3/4 adverse drug reactions (OR 5.6; p = 0.02), ethnicity 'Indian subcontinent' (OR 8.5; p = <0.01), ethnicity 'other' (OR 31.2; p = 0.01) and receipt of immunosuppressants (OR 6.8; p = <0.01) were independent predictors of TB recurrence. CONCLUSIONS: Within this UK setting, the rate of TB recurrence was low, predominantly due to relapse. The identification of an elevated recurrence risk amongst the ethnic group contributing most cases to the national TB burden presents an opportunity to improve individual and population health.


Assuntos
Tuberculose/diagnóstico , Tuberculose/epidemiologia , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Bases de Dados Factuais , Feminino , Humanos , Imunossupressores/uso terapêutico , Incidência , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/isolamento & purificação , Prognóstico , Recidiva , Fatores de Risco , Tuberculose/terapia , Reino Unido/epidemiologia , Adulto Jovem
7.
Crit Rev Microbiol ; 43(5): 621-630, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28338360

RESUMO

Resuscitation promoting factors (Rpf) are peptidoglycan-hydrolyzing enzymes that are pivotal in the resuscitation of quiescent actinobacteria including Mycobacterium tuberculosis. From the published data, it is clear that Rpf are required for the resuscitation of non-replicating bacilli and pathogenesis in murine infection model of tuberculosis, although their direct influence on human Mycobacterium tuberculosis infection is ill-defined. In this review, we describe the progress in the understanding of the roles that Rpf play in human tuberculosis pathogenesis and importance of bacilli dependent upon Rpf for growth for the outcome of human tuberculosis. We outline how this research is opening up important opportunities for the diagnosis, treatment and prevention of human disease, progress in which is essential to attain the ultimate goal of tuberculosis eradication.


Assuntos
Proteínas de Bactérias/metabolismo , Citocinas/metabolismo , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/fisiologia , Tuberculose Pulmonar/patologia , Animais , Proteínas de Bactérias/genética , Biomarcadores/metabolismo , Citocinas/genética , Humanos , Camundongos , Mycobacterium tuberculosis/genética , Peptidoglicano/metabolismo , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/terapia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
Antimicrob Agents Chemother ; 60(10): 6227-33, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27503641

RESUMO

Tuberculosis is a major infectious disease that requires prolonged chemotherapy with a combination of four drugs. Here we present data suggesting that treatment of Mycobacterium tuberculosis, the causative agent of tuberculosis, and Mycobacterium smegmatis, a model organism widely used for the screening of antituberculosis agents, with first-line drugs resulted in the generation of substantial populations that could be recovered only by the addition of a culture supernatant from growing mycobacteria. These bacilli failed to grow in standard media, resulting in significant underestimation of the numbers of viable mycobacteria in treated samples. We generated M. smegmatis strains overexpressing M. tuberculosis resuscitation-promoting factors (Rpfs) and demonstrated their application for the detection of Rpf-dependent mycobacteria generated after drug exposure. Our data offer novel opportunities for validation of the sterilizing activity of antituberculosis agents.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas/métodos , Citocinas/metabolismo , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Meios de Cultura , Citocinas/genética , Regulação Bacteriana da Expressão Gênica , Testes de Sensibilidade Microbiana/métodos , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Reprodutibilidade dos Testes
9.
Antimicrob Agents Chemother ; 60(4): 2476-83, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26883695

RESUMO

Tuberculous sputum contains multipleMycobacterium tuberculosispopulations with different requirements for isolationin vitro These include cells that form colonies on solid media (plateableM. tuberculosis), cells requiring standard liquid medium for growth (nonplateableM. tuberculosis), and cells requiring supplementation of liquid medium with culture supernatant (SN) for growth (SN-dependentM. tuberculosis). Here, we describe protocols for the cryopreservation and direct assessment of antimicrobial tolerance of theseM. tuberculosispopulations within sputum. Our results show that first-line drugs achieved only modest bactericidal effects on all three populations over 7 days (1 to 2.5 log10reductions), and SN-dependentM. tuberculosiswas more tolerant to streptomycin and isoniazid than the plateable and nonplateableM. tuberculosisstrains. Susceptibility of plateableM. tuberculosisto bactericidal drugs was significantly increased after passagein vitro; thus, tolerance observed in the sputum samples from the population groups was likely associated with mycobacterial adaptation to the host environment at some time prior to expectoration. Our findings support the use of a simpleex vivosystem for testing drug efficacies against mycobacteria that have phenotypically adapted during tuberculosis infection.


Assuntos
Adaptação Fisiológica , Antituberculosos/farmacologia , Bioensaio , Isoniazida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Estreptomicina/farmacologia , Criopreservação , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/fisiologia , Fenótipo , Escarro/microbiologia , Tuberculose Pulmonar/microbiologia
10.
J Biol Chem ; 289(36): 25241-9, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25012658

RESUMO

We have recently shown that RaaS (regulator of antimicrobial-assisted survival), encoded by Rv1219c in Mycobacterium tuberculosis and by bcg_1279c in Mycobacterium bovis bacillus Calmette-Guérin, plays an important role in mycobacterial survival in prolonged stationary phase and during murine infection. Here, we demonstrate that long chain acyl-CoA derivatives (oleoyl-CoA and, to lesser extent, palmitoyl-CoA) modulate RaaS binding to DNA and expression of the downstream genes that encode ATP-dependent efflux pumps. Moreover, exogenously added oleic acid influences RaaS-mediated mycobacterial improvement of survival and expression of the RaaS regulon. Our data suggest that long chain acyl-CoA derivatives serve as biological indicators of the bacterial metabolic state. Dysregulation of efflux pumps can be used to eliminate non-growing mycobacteria.


Assuntos
Acil Coenzima A/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Mycobacterium/metabolismo , Acil Coenzima A/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação/genética , DNA Bacteriano/genética , Polarização de Fluorescência , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/genética , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Mycobacterium/genética , Mycobacterium bovis/genética , Mycobacterium bovis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Ácido Oleico/farmacologia , Palmitoil Coenzima A/química , Palmitoil Coenzima A/metabolismo , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
11.
Antimicrob Agents Chemother ; 58(5): 2798-806, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24590482

RESUMO

Antimicrobials targeting cell wall biosynthesis are generally considered inactive against nonreplicating bacteria. Paradoxically, we found that under nonpermissive growth conditions, exposure of Mycobacterium bovis BCG bacilli to such antimicrobials enhanced their survival. We identified a transcriptional regulator, RaaS (for regulator of antimicrobial-assisted survival), encoded by bcg1279 (rv1219c) as being responsible for the observed phenomenon. Induction of this transcriptional regulator resulted in reduced expression of specific ATP-dependent efflux pumps and promoted long-term survival of mycobacteria, while its deletion accelerated bacterial death under nonpermissive growth conditions in vitro and during macrophage or mouse infection. These findings have implications for the design of antimicrobial drug combination therapies for persistent infectious diseases, such as tuberculosis.


Assuntos
Anti-Infecciosos/farmacologia , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Animais , Linhagem Celular , Ensaio de Desvio de Mobilidade Eletroforética , Polarização de Fluorescência , Humanos , Camundongos , Mycobacterium bovis/metabolismo , Mycobacterium tuberculosis/metabolismo
13.
Lancet Microbe ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38906163

RESUMO

BACKGROUND: High proportions of Mycobacterium tuberculosis cells in sputum containing triacylglycerol-rich lipid bodies have been shown to be associated with treatment failure or relapse following antituberculous chemotherapy. Although lipid body determination is a potential biomarker for supporting clinical trial and treatment decisions, factors influencing variability in sputum frequencies of lipid body-positive (%LB+) M tuberculosis in patients are unknown. We aimed to test our hypothesis that exposure to host-generated NO and M tuberculosis strains are factors associated with differences in sputum %LB+. METHODS: In this observational study, we determined %LB+ frequencies before treatment by microscopy in patients with smear-positive tuberculosis from two separate prospective observational study settings (Gondar, Ethiopia, recruited between May 1, 2010, and April 30, 2011, and Fajara, The Gambia, who provided sputum samples before treatment between May 5, 2010, and Dec 22, 2011). In Ethiopia, fractional exhaled nitric oxide (FeNO) was measured as a biomarker of host NO, and M tuberculosis strain differences were determined by spoligotyping. Treatment response was assessed by percentage weight change after 7 months. In The Gambia, treatment responses were assessed as change in BMI and radiographic burden of disease after 6 months. Sputum M tuberculosis isolates were studied in vitro for their %LB+ and triacylglycerol synthase 1 (tgs1) mRNA responses to NO exposure. Propidium iodide staining was used as a measure of NO strain toxicity. Correlation between in vitro %LB+ frequencies following NO exposure and those of the same strain in sputum was examined with linear regression and Dunnett's multiple comparison test. FINDINGS: In Ethiopia, 73 patients who were smear positive for pulmonary tuberculosis were recruited (43 [59%] were male and 30 [41%] were female). Of these, the %LB+ in the sputum of 59 patients showed linear correlation with log10 FeNO (r2=0·28; p<0·0001) and an association with strain spoligotype was suggested. Seven M tuberculosis strains from The Gambia showed different dose-responses to NO in vitro, demonstrated by changing lipid body content, tgs1 transcription, and bacterial toxicity. In sputum %LB+ frequencies correlated with in vitro %LB+ responses to NO of the corresponding isolate. In a subset of 34 patients across both cohorts, higher sputum %LB+ frequencies before treatment were associated with weaker responses to treatment than lower sputum %LB+ frequencies. INTERPRETATION: M tuberculosis strain and exposure to host-generated NO are associated with sputum %LB+. Our results support the use of M tuberculosis strain-dependent sputum %LB+ as a predictive biomarker of treatment response. FUNDING: The Medical Research Council, the University of Leicester, and the University of Gondar.

14.
Microbiol Spectr ; 11(3): e0106623, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036353

RESUMO

Host metabolism reprogramming is a key feature of Mycobacterium tuberculosis (Mtb) infection that enables the survival of this pathogen within phagocytic cells and modulates the immune response facilitating the spread of the tuberculosis disease. Here, we demonstrate that a previously uncharacterized secreted protein from Mtb, Rv1813c, manipulates the host metabolism by targeting mitochondria. When expressed in eukaryotic cells, the protein is delivered to the mitochondrial intermembrane space and promotes the enhancement of host ATP production by boosting the oxidative phosphorylation metabolic pathway. Furthermore, the release of cytochrome c from mitochondria, an early apoptotic event in response to short-term oxidative stress, is delayed in Rv1813c-expressing cells. This study reveals a novel class of mitochondria targeting effectors from Mtb that might participate in host cell metabolic reprogramming and apoptosis control during Mtb infections. IMPORTANCE In this article, using a combination of techniques (bioinformatics, structural biology, and cell biology), we identified and characterized a new class of effectors present only in intracellular mycobacteria. These proteins specifically target host cell mitochondria when ectopically expressed in cells. We showed that one member of this family (Rv1813c) affects mitochondria metabolism in a way that might twist the immune response. This effector also inhibits the cytochrome c exit from mitochondria, suggesting that it might alter normal host cell apoptotic capacities, one of the first defenses of immune cells against Mtb infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , Citocromos c/metabolismo , Tuberculose/microbiologia , Metabolismo Energético , Mitocôndrias/metabolismo , Interações Hospedeiro-Patógeno
15.
Front Cell Infect Microbiol ; 12: 957287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093181

RESUMO

Tuberculosis (TB) claims nearly 1.5 million lives annually. Current TB treatment requires a combination of several drugs administered for at least 6 months. Mycobacterium tuberculosis (Mtb), the causative agent of TB, can persist in infected humans and animals for decades. Moreover, during infection, Mtb produces differentially culturable bacteria (DCB) that do not grow in standard media but can be resuscitated in liquid media supplemented with sterile Mtb culture filtrates or recombinant resuscitation-promoting factors (Rpfs). Here, we demonstrate that, in an intranasal murine model of TB, Mtb DCB are detectable in the lungs after 4 weeks of infection, and their loads remain largely unchanged during a further 8 weeks. Treatment of the infected mice with dimethyl fumarate (DMF), a known drug with immunomodulatory properties, for 8 weeks eliminates Mtb DCB from the lungs and spleens. Standard TB treatment consisting of rifampicin, isoniazid, and pyrazinamide for 8 weeks reduces Mtb loads by nearly four orders of magnitude but does not eradicate DCB. Nevertheless, no DCB can be detected in the lungs and spleens after 8 weeks of treatment with DMF, rifampicin, isoniazid, and pyrazinamide. Our data suggest that addition of approved anti-inflammatory drugs to standard treatment regimens may improve TB treatment and reduce treatment duration.


Assuntos
Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Animais , Antituberculosos/uso terapêutico , Fumarato de Dimetilo/farmacologia , Modelos Animais de Doenças , Humanos , Isoniazida/farmacologia , Camundongos , Pirazinamida/uso terapêutico , Rifampina/farmacologia
16.
Microorganisms ; 10(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35208914

RESUMO

BACKGROUND: The turnaround times for phenotypic tests used to monitor the bacterial load of Mycobacterium tuberculosis, in both clinical and preclinical studies, are delayed by the organism's slow growth in culture media. The existence of differentially culturable populations of M.tuberculosis may result in an underestimate of the true number. Moreover, culture methods are susceptible to contamination resulting in loss of critical data points. OBJECTIVES: We report the adaptation of our robust, culture-free assay utilising 16S ribosomal RNA, developed for sputum, to enumerate the number of bacteria present in animal tissues as a tool to improve the read-outs in preclinical drug efficacy studies. METHODS: Initial assay adaptation was performed using naïve mouse lungs spiked with known quantities of M. tuberculosis and an internal RNA control. Tissues were homogenised, total RNA extracted, and enumeration performed using RT-qPCR. We then evaluated the utility of the assay, in comparison to bacterial counts estimated using growth assays on solid and liquid media, to accurately inform bacterial load in tissues from M. tuberculosis-infected mice before and during treatment with a panel of drug combinations. RESULTS: When tested on lung tissues derived from infected mice, the MBL assay produced comparable results to the bacterial counts in solid culture (colony forming units: CFU). Notably, under specific drug treatments, the MBL assay was able to detect a significantly higher number of M. tuberculosis compared to CFU, likely indicating the presence of bacteria that were unable to produce colonies in solid-based culture. Additionally, growth recovery in liquid media using the most probable number (MPN) assay was able to account for the discrepancy between the MBL assay and CFU number, suggesting that the MBL assay detects differentially culturable sub-populations of M. tuberculosis. CONCLUSIONS: The MBL assay can enumerate the bacterial load in animal tissues in real time without the need to wait for extended periods for cultures to grow. The readout correlates well with CFUs. Importantly, we have shown that the MBL is able to measure specific populations of bacteria not cultured on solid agar. The adaptation of this assay for preclinical studies has the potential to decrease the readout time of data acquisition from animal experiments and could represent a valuable tool for tuberculosis drug discovery and development.

17.
Microbiol Spectr ; 10(1): e0211021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34985335

RESUMO

Bacteria have developed unique mechanisms to adapt to environmental stresses and challenges of the immune system. Here, we report that Burkholderia pseudomallei, the causative agent of melioidosis, and its laboratory surrogate, Burkholderia thailandensis, utilize distinct mechanisms for surviving starvation at different incubation temperatures. At 21°C, Burkholderia are present as short rods which can rapidly reactivate and form colonies on solid media. At 4°C, Burkholderia convert into coccoid forms that cannot be cultured on solid agar but can be resuscitated in liquid media supplemented with supernatant obtained from logarithmic phase cultures of B. thailandensis, or catalase and Tween 80, thus displaying characteristics of differentially culturable bacteria (DCB). These DCB have low intensity fluorescence when stained with SYTO 9, have an intact cell membrane (propidium iodide negative), and contain 16S rRNA at levels comparable with growing cells. We also present evidence that lytic transglycosylases, a family of peptidoglycan-remodeling enzymes, are involved in the generation of coccoid forms and their resuscitation to actively growing cells. A B. pseudomallei ΔltgGCFD mutant with four ltg genes deleted did not produce coccoid forms at 4°C and could not be resuscitated in the liquid media evaluated. Our findings provide insights into the adaptation of Burkholderia to nutrient limitation and the generation of differentially culturable bacteria. IMPORTANCE Bacterial pathogens exhibit physiologically distinct forms that enable their survival in an infected host, the environment and following exposure to antimicrobial agents. B. pseudomallei causes the disease melioidosis, which has a high mortality rate and is difficult to treat with antibiotics. The bacterium is endemic to several countries and detected in high abundance in the environment. Here, we report that during starvation at low temperature, B. pseudomallei produces coccoid forms that cannot grow in standard media and which, therefore, can be challenging to detect using common tools. We provide evidence that the formation of these cocci is mediated by cell wall-specialized enzymes and lytic transglycosylases, and that resuscitation of these forms occurs following the addition of catalase and Tween 80. Our findings have important implications for the disease control and detection of B. pseudomallei, an agent of both public health and defense interest.


Assuntos
Burkholderia/fisiologia , Temperatura , Burkholderia/citologia , Burkholderia/genética , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/fisiologia , Técnicas de Cultura de Células , Humanos , Melioidose/microbiologia , Peptidoglicano , RNA Ribossômico 16S/genética
18.
mBio ; 13(6): e0265622, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36374090

RESUMO

The genetic diversity of Mycobacterium tuberculosis can influence disease severity and transmissibility. To better understand how this diversity influences individuals and communities, we phenotyped M. tuberculosis that was causing a persistent outbreak in the East Midlands, United Kingdom. Compared to nonoutbreak isolates, bacilli had higher lipid contents and more hydrophobic cell surfaces. In macrophage infection models, the bacteria increased more rapidly, provoked the enhanced accumulation of macrophage lipid droplets and enhanced the secretion of IL-1ß. Natural deletions in fadB4, nrdB, and plcC distinguished the outbreak isolates from other lineage 3 isolates in the region. fadB4 is annotated with a putative role in cell envelope biosynthesis, so the loss of this gene has the potential to alter the interactions of bacteria with immune cells. Reintroduction of fadB4 to the outbreak strain led to a phenotype that more closely resembled those of nonoutbreak strains. The improved understanding of the microbiological characteristics and the corresponding genetic polymorphisms that associate with outbreaks have the potential to inform tuberculosis control. IMPORTANCE Tuberculosis (TB) killed 1.5 million people in 2020 and affects every country. The extent to which the natural genetic diversity of Mycobacterium tuberculosis influences disease manifestation at both the individual and epidemiological levels remains poorly understood. Insights into how pathogen polymorphisms affect patterns of TB have the potential to translate into clinical and public health practice. Two distinct lineage 3 strains isolated from local TB outbreaks, one of which (CH) was rapidly terminated and the other of which (Lro) persistently transmitted for over a decade, provided us with an opportunity to study these issues. We compared genome sequences, microbiological characteristics, and early immune responses that were evoked upon infection. Our results indicate that the natural lack of fadB4 in the Lro strain contributes to its unique features.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Surtos de Doenças , Macrófagos/microbiologia , Mycobacterium tuberculosis/genética , Fenótipo , Tuberculose/microbiologia , Reino Unido/epidemiologia , Proteínas de Bactérias/metabolismo
19.
Am J Respir Crit Care Med ; 181(2): 174-80, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19875686

RESUMO

RATIONALE: Resuscitation-promoting factors (Rpfs) are a family of secreted proteins produced by Mycobacterium tuberculosis (Mtb) that stimulate mycobacterial growth. Although mouse infection studies show that they support bacterial survival and disease reactivation, it is currently unknown whether Rpfs influence human infection. We hypothesized that tuberculous sputum might include a population of Rpf-dependent Mtb cells. OBJECTIVES: To determine whether Rpf-dependent Mtb cells are present in human sputum and explore the impact of chemotherapy on this population. METHODS: In tuberculous sputum samples we compared the number of cells detected by conventional agar colony-forming assay with that determined by limiting dilution, most-probable number assay in the presence or absence of Rpf preparations. MEASUREMENTS AND MAIN RESULTS: In 20 of 25 prechemotherapy samples from separate patients, 80-99.99% of the cells demonstrated by cultivation could be detected only with Rpf stimulation. Mtb cells with this phenotype were not generated on specimen storage or by inoculating sputum samples with a selection of clinical isolates; moreover, Rpf dependency was lost after primary isolation. During chemotherapy, the proportion of Rpf-dependent cells was found to increase relative to the surviving colony-forming population. CONCLUSIONS: Smear-positive sputum samples are dominated by a population of Mtb cells that can be grown only in the presence of Rpfs. These intriguing proteins are therefore relevant to human infection. The Rpf-dependent population is invisible to conventional culture and is progressively enhanced in relative terms during chemotherapy, indicating a form of phenotypic resistance that may be significant for both chemotherapy and transmission.


Assuntos
Proteínas de Bactérias/farmacologia , Citocinas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Escarro/microbiologia , Tuberculose Pulmonar/diagnóstico , Antituberculosos/uso terapêutico , Técnicas Bacteriológicas , Contagem de Colônia Microbiana , Ensaio de Unidades Formadoras de Colônias , Humanos , Prognóstico , Rifampina/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/transmissão
20.
Front Microbiol ; 12: 607512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584611

RESUMO

The accessory genomes of many pathogenic bacteria include ABC transporters that scavenge metal by siderophore uptake and ABC transporters that contribute to antimicrobial resistance by multidrug efflux. There are mechanistic and recently recognized structural similarities between siderophore importer proteins and efflux pumps. Here we investigated the influence of siderophore importer YbtPQ on antimicrobial resistance of Klebsiella pneumoniae. YbtPQ is encoded in the yersiniabactin cluster in a prevalent mobile genetic element ICEKp, and is also common in pathogenicity islands of Escherichia coli and Yersinia species, where yersiniabactin enhances virulence. Deletion of ICEKp increased the susceptibility of K. pneumoniae to all antimicrobials tested. The mechanism was dependent on the yersiniabactin importer YbtPQ and may involve antimicrobial efflux, since it was affected by the inhibitor reserpine. The element ICEKp is naturally highly mobile, indeed the accessory genome of K. pneumoniae is recognized as a reservoir of genes for the emergence of hospital outbreak strains and for transfer to other Gram-negative pathogens. Introduction of ICEKp, or a plasmid encoding YbtPQ, to E. coli decreased its susceptibility to a broad range of antimicrobials. Thus a confirmed siderophore importer, on a rapidly evolving and highly mobile element capable of interspecies transfer, may have a secondary function exporting antimicrobials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa